Please wait a minute...
 
隧道与地下工程灾害防治  2020, Vol. 2 Issue (3): 36-47    
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
冲蚀空洞对埋地供水管道力学性能的影响研究
张稳军1,2,朱战魁1,2,李瑶1,2,张高乐1,2
1. 天津大学建筑工程学院, 天津 300354;2. 天津大学滨海土木工程结构与安全教育部重点实验室, 天津 300354
Study on the mechanical behaviors of buried water supply pipelines under the effect of erosion void
ZHANG Wenjun1,2, ZHU Zhankui1,2, LI Yao1,2, ZHANG Gaole1,2
1. School of Civil Engineering, Tianjin University, Tianjin 300354, China;
2. Key Laboratory of Coast Civil Structure Safety of the Education Ministry, Tianjin University, Tianjin 300354, China
下载:  PDF (5700KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于有限元软件ABAQUS,采用三维数值分析的方法,通过建立埋地供水管道全周地基弹簧模型,综合考虑冲蚀空洞以及管道运行荷载,研究冲蚀空洞对埋地钢管和球墨铸铁管供水管道力学性能的影响。研究表明:冲蚀空洞是影响埋地供水管道安全性能的重要因素,随着冲蚀空洞长度的增大,由冲蚀空洞引起的管道纵向应力会大于环向应力,纵向应力成为管道的主控应力;内压是引起管道应力的主要因素之一,但是其对管道纵向不均匀沉降的影响很小,可以忽略;埋深和地表荷载是导致管道应力和位移的重要原因,对埋置在行车道内的管道,需注意埋深小于1.0 m的管道,对于埋深大于4.0 m和小于0.5 m的管道需要特别注意。研究成果可为埋地供水管道的安全评估和运营管理提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张稳军
朱战魁
李瑶
张高乐
关键词:  埋地供水管道  冲蚀空洞  力学性能    
Abstract: Based on the finite element software ABAQUS, taking buried carbon steel pipes and ductile iron pipes as the research objects, and considering the operating load of pipelines, a full-circumferential foundation spring model of the buried water supply pipeline was established. The impact of erosion void on the mechanical behaviors of two kinds of pipelines was studied systematically by the above model. The results showed that erosion void was an important factor affecting the safety performance of buried water supply pipelines. And when the length of the erosion void increased to a certain extent, the axial stress of the pipelines caused by the erosion void would be greater than the hoop stress, which would become the controlled stress that the pipelines bear. Internal pressure was one of the main factors causing the stress of pipeline, but its influence on the longitudinal nonuniform settlement of pipeline was very small and could be ignored. Burial depth and surface load are two important causes of the stress and displacement of pipeline. When the pipelines were buried in the carriageway, attention should be paid to pipelines with a buried depth of less than 1.0 m, and special attention should be paid to pipelines with a buried depth of greater than 4.0 m and less than 0.5 m. The research results of this paper could provide support for the safety assessment and operation management of buried water supply pipelines.
Key words:  buried water supply pipeline    erosion void    mechanical behavior
收稿日期:  2020-07-13      发布日期:  2020-09-20     
中图分类号:  TU990.3  
基金资助: 国家重点研发计划资助项目(2016YFC0802400)
作者简介:  张稳军(1975— ),男,甘肃平凉人,博士,《中国公路学报》副主编,博士生导师,主要研究方向为隧道与地下工程施工及设计教学与科研. E-mail:wjzhang@tju.edu.cn
引用本文:    
张稳军, 朱战魁, 李瑶, 张高乐. 冲蚀空洞对埋地供水管道力学性能的影响研究[J]. 隧道与地下工程灾害防治, 2020, 2(3): 36-47.
ZHANG Wenjun, ZHU Zhankui, LI Yao, ZHANG Gaole. Study on the mechanical behaviors of buried water supply pipelines under the effect of erosion void. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 36-47.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2020/V2/I3/36
[1] 中华人民共和国住房和城乡建设部.城镇供水管网漏损控制及评定标准:CJJ 92—2016[S]. 北京: 中国建筑工业出版社, 2017.
[2] 王帅超. 城市地下管道渗漏引起的路面塌陷机理分析与研究[D]. 郑州: 郑州大学, 2017. WANG Shuaichao. Analysis and study on subsidence mechanisms of road caused by leakage of urban underground pipeline[D]. Zhengzhou: Zhengzhou University, 2017.
[3] 张成平, 张顶立, 王梦恕, 等.城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. 岩土力学, 2010, 31(增刊1): 303-309. ZHANG Chengping, ZHANG Dingli, WANG Mengshu, et al. Catastrophe mechanism and control technology of ground collapse induced by urban tunneling[J]. Rock and Soil Mechanics, 2010, 31(Suppl.1): 303-309.
[4] 侯艳娟, 张顶立, 李鹏飞. 北京地铁施工安全事故分析及防治对策[J]. 北京交通大学学报(自然科学版), 2009, 33(3): 52-59. HOU Yanjuan, ZHANG Dingli, LI Pengfei. Analysis and control measures of safety accidents in Beijing subway construction[J]. Journal of Beijing Jiaotong University,, 2009, 33(3): 52-59.
[5] ZHENG Tan. Nonlinear finite element study of deteriorated rigid sewers including the influence of erosion voids[D]. Kingston, Canada: Queens University, 2007.
[6] XU M, SHEN D W, JIN D H. The behaviour of jointed large-diameter reinforced concrete pipeline buried in various ground conditions[J]. Engineering Structures, 2017, 153: 354-369.
[7] BALKAYA M, MOORE I D, SAGLAMER A. Study of non-uniform bedding due to voids under jointed PVC water distribution pipes[J]. Geotextiles and Geomembranes, 2012, 34: 39-50.
[8] BALKAYA M, MOORE I D, SAGLAMER A. Study of nonuniform bedding support because of erosion under cast iron water distribution pipes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(10): 1247-1256.
[9] 王复明, 李斌, 方宏远. 含脱空、腐蚀病害管道高聚物注浆修复试验与数值研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 1-8. WANG Fuming, LI Bin, FANG Hongyuan. Experimental and numerical study on polymer grouting repair of underground pipeline with void and corrosion diseases[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 1-8.
[10] SHOU K J, CHEN B C. Numerical analysis of the mechanical behaviors of pressurized underground pipelines rehabilitated by cured-in-place-pipe method[J]. Tunnelling and Underground Space Technology, 2018, 71: 544-554.
[11] 北京市市政工程设计研究总院.给水排水工程埋地钢管管道结构设计规程:CECS 141: 2002[S]. 北京: 中国建筑工业出版社, 2003.
[12] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.钢结构设计标准:GB 50017-2017[S]. 北京: 中国建筑工业出版社, 2018.
[13] 北京市市政工程设计研究总院.给水排水工程埋地铸铁管管道结构设计规程:CECS 142: 2002[S]. 北京: 中国建筑工业出版社, 2003.
[14] 中华人民共和国国家质量监督检验检疫总局.水及燃气管道用球墨铸铁管、管件和附件:GBT13295-2019[S]. 北京: 中国标准出版社, 2020.
[15] 焦亚基, 朱合华, 闫治国, 等. 深层调蓄排水盾构隧道管片接头预埋件抗拉试验三维数值模拟研究[J]. 现代隧道技术, 2018, 55(5): 188-200. JIAO Yaji, ZHU Hehua, YAN Zhiguo, et al. Three dimensional numerical simulation study on the tensile test of the embedded components in segment joints of deep buried storage and drainage shield tunnels[J]. Modern Tunnelling Technology, 2018, 55(5): 188-200.
[16] 小泉淳.盾构隧道管片设计-从容许应力设计法到极限状态设计法[M]. 官林星, 译.北京: 中国建筑工业出版社, 2012.
[17] 王建龙. 快速轨道交通盾构隧道曲线段通用楔形管片力学特性研究[D]. 天津: 天津大学, 2018. WANG Jianlong. Study on mechanical properties of universal wedge segments for curved section of shield tunnel in rapid rail transit[D]. Tianjin: Tianjin University, 2018.
[18] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.城市轨道交通岩土工程勘察规范:GB 50307—2012[S]. 北京: 中国计划出版社, 2018.
[19] 中华人民共和国建设部,国家质量监督检验检疫总局.给水排水工程管道结构设计规范:GB 50332-2002[S]. 北京: 中国建筑工业出版社, 2003.
[20] 周凯龙.不同埋深覆土车辆荷载作用的计算[J]. 工程建设与设计, 2018(17): 131-133. ZHOU Kailong. The calculation of vehicle load on different buried depth[J]. Construction and Design for Project, 2018(17): 131-133.
[21] 李兴宇. 侵蚀坑作用下承插式埋地管道完整性评价方法[D]. 大连: 大连理工大学, 2016. LI Xingyu. Study on integrity assessment of buried bell-and-spigot pipelines under the effect of erosion voids[D]. Dalian: Dalian University of Technology, 2016.
[22] 何勇兴. 地下管道漏损对周围土体侵蚀影响研究[D]. 杭州: 浙江大学, 2017. HE Yongxing. Study on the soil erosion around underground pipe leakage[D]. Zhejiang: Zhejiang University, 2017.
[23] 胡聿涵, 白玉川, 徐海珏. 近10年中国城市道路塌陷原因及防治对策分析[J].公路, 2016, 61(9): 130-135. HU Yuhan, BAI Yuchuan, XU Haijue. Analysis of reasons for urban road collapse and prevention and control countermeasures in recent decade of China[J]. Highway, 2016, 61(9): 130-135.
[24] 梁建文, 高美娇, 巴振宁. 寒潮期市政埋地供水管道应力分析[J]. 安全与环境学报, 2019, 19(2): 436-443. LIANG Jianwen, GAO Meijiao, BA Zhenning. Stress analysis of municipal buried water pipes during cold wave period[J]. Journal of Safety and Environment, 2019, 19(2): 436-443.
[1] 王复明,李斌,方宏远. 含脱空、腐蚀病害地下管道高聚物注浆修复试验与数值研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 1-8.
[2] 王复明, 李斌, 方宏远. 含脱空、腐蚀病害管道高聚物注浆修复试验与数值研究[J]. 隧道与地下工程灾害防治, 0, (): 1-8.
[3] 林明熠, 刘芳, 孔维钧. 临近基坑地下供水管网变形破坏预警模型[J]. 隧道与地下工程灾害防治, 2022, 4(4): 68-78.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn