Editor-in-Chief: DU Yanliang 
Executive Deputy Editor-in-Chief: LI Shucai 
Sponsor: Shandong University
  Office Online  
  Quick Search  
  Online Journal  
    » Current Issue
    » Archive
    » Top Download
    » Top Read
  WeChat  
Progress and prospect of experimental research on the mechanism of rockburst prevention and control by drilling pressure relief
The paper reviewed the experimental research progress of prefabricated drilling and high stress real-time drilling in analyzing the mechanism of drilling pressure relief(DPR)for preventing rockburst disasters from the perspectives of macroscopic(mechanical behavior characteristics, failure characteristics, energy evolution)and microscopic(crack evolution), a. . .
Hazard Control in Tunnelling and Underground Engineering, 2023 Vol. 5 (2): 1-23    DOI: 10.19952/j.cnki.2096-5052.2023.02.01
 
Current Issue Archive Top Download Top Read
  20 September 2024, Volume 6 Issue 3 Previous Issue   
For Selected: View Abstracts Toggle Thumbnails
Research Article
Case study on the overall stability of foundation pit slope with weak interlayer   Collect
LI Lianxiang, LÜ Guiqing, ZHANG Shangru, ZHAO Yongxin, WANG Chuhan
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 1-11.   DOI: 10.19952/j.cnki.2096-5052.2024.03.01
Abstract ( 29 )     PDF (3717KB) ( 18 )  
In the northern area of Jinan City, along the banks of the Yellow River, there was a layer of silty soil approximately 6 to 8 meters below the surface. A large number of landslides were observed in nearby excavations at this depth, demonstrating a different overall failure mode from the conventional circular sliding method for excavations. Based on extensive engineering landslide characteristics, a specific case analysis indicated that the slopes of excavations containing weak interlayers were subjected to a combined circular-plane overall failure mode. This conclusion was validated through numerical analysis using Plaxis finite element software. An analytical solution for the overall stability analysis of excavation slopes with weak interlayers was derived based on statics and moment equilibrium equations. The optimal support scheme was proposed and validated through numerical and monitoring data. The findings suggested that excavation slopes in geological units of the Yellow River alluvial plain in northern Jinan City were influenced by weak interlayers, exhibiting an overall failure mode of circular-plane sliding. The conventional circular sliding calculation method for excavation design posed safety risks. Therefore, the selection of excavation support structures should incorporate shear-resistant elements penetrating the weak interlayers to transform the circular-plane failure mode into circular sliding mode, thus ensuring excavation safety.
Model test study on surface collapse induced by underground excavation disturbance based on PIV technique   Collect
HUANG Fu, SHEN Yongbin, ZHANG Min, WANG Yongtao, YANG Yunqiang, ZHU Rui
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 12-21.   DOI: 10.19952/j.cnki.2096-5052.2024.03.02
Abstract ( 29 )     PDF (8323KB) ( 18 )  
The mechanism of surface subsidence induced by shallow buried excavation construction and the failure mode under ultimate state were not unclear. In view of this situation, a scaled model experiment based on particle image velocimetry(PIV)was conducted to simulate the construction process of shallow buried tunnels in sandy soil and Ⅴ-grade surrounding rock. PIV technology was used to analyze the deformation images of the surrounding rock during the construction process of the tunnel, and to obtain displacement cloud maps of geological deformation induced by construction disturbance. By analyzing the characteristics and gradual evolution of surface deformation induced by underground excavation construction disturbance, the shape and range of the failure surface and collapse induced by underground excavation tunnel construction in different strata under the limit state were summarized.The equation of the failure surface induced by the collapse of the arch top strata during underground excavation construction was derived by using the upper limit theorem of limit analysis and variational principle, and the collapse surface graph was drawn.The validity of the model test results was verified by comparing the range of collapse induced by underground excavation construction in the arch crown strata obtained from the model test with the theoretical calculation results.
Calculation of surrounding rock pressure of permeable ribbed double-arch tunnel and its sensitivity analysis   Collect
ZHANG Xu, WANG Honggang, WANG Wenqian
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 22-31.   DOI: 10.19952/j.cnki.2096-5052.2024.03.03
Abstract ( 25 )     PDF (5120KB) ( 11 )  
Drawing from the engineering context of a shallow-buried, biased-load, permeable ribbed double-arch tunnel, the strength reduction method was employed to determine the failure pattern of the surrounding rock at the tunnel's ultimate excavation state. According to the failure characteristics of surrounding rock and the basis of basic assumptions, a fractured sliding surface was hypothesized, and a structural load calculation model for the surrounding rock pressure in the permeable ribbed double-arch tunnel was derived. This model was compared and validated against the results obtained from the stratum structure model. An analysis of the sensitivity of the surrounding rock pressure was conducted. The findings indicated that the tunnel was subjected to asymmetric biased loads, with the vertical load on the side with large buried depth chamber being significantly greater than that on the side with small buried depth chamber. The horizontal load on the right sidewall of the side with large buried depth chamber was significantly greater than the horizontal load on the surface of the left and right lining segments above the central partition wall. The horizontal lateral pressure coefficient was influenced by the slope's biased angle and the internal friction angle of the surrounding rock's sliding surface, with the latter having a more substantial effect. The surrounding rock pressure was closely related to the horizontal lateral pressure coefficient and was influenced by the rock density, the slope's biased angle, and the internal friction angle of the sliding surface. The sensitivity of surrounding rock pressure was significantly impacted by the slope's biased angle and the internal friction angle.
Construction stability of deeply buried highway tunnel through fault fracture zones in mountainous areas   Collect
YANG Li, XIA Zengxuan, LOU Wenjie, LIU Shan, LI Fengting, WU Ke
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 32-42.   DOI: 10.19952/j.cnki.2096-5052.2024.03.04
Abstract ( 24 )     PDF (12378KB) ( 27 )  
In order to investigate the stress and strain state of the surrounding rock and the effect of supporting structure of the deep buried tunnel through the fault zone in mountainous area, taking Lianfeng Mountain Tunnel Project as the research background, based on ABAQUS large-scale finite element numerical computation program, the mechanics calculation model of the construction of the deep buried tunnel through the fault zone was established, and the change rule of the structural stress state and the horizontal and vertical settlement rule of the mountain after the tunnel excavation and lining were studied. The results showed that the settlement in the fault zone during tunnel excavation was much larger than that in the normal rock body; the stress difference between the surrounding rock and the peripheral mountain body at the fault zone was larger, and the stress difference at the junction with the normal mountain body was larger; the settlement caused by tunnel excavation affected the range of 50 m, and the settlement at the center of the twin tunnels increased with the increase of vertical height; the excavation of the second tunnel in the construction of the twin tunnels caused the increase of the strain of the first tunnel.
The determination method of the "three major elevations" of underground water-sealed cavern   Collect
JING Shaodong, DU Yinong
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 43-49.   DOI: 10.19952/j.cnki.2096-5052.2024.03.05
Abstract ( 24 )     PDF (7223KB) ( 6 )  
In order to study the determination methods of "three major elevations" in the design of underground water sealed caverns, including the elevation of the groundwater level, the elevation of the water curtain system, and the elevation of the oil storage caverns, a method for determining the "three major elevations" from the perspective of water sealing effect on the bases of a certain cavern project was proposed. The water sealing evaluation was also conducted. The analysis results indicated that the regional groundwater drainage datum plane can be taken as the design groundwater level. The design elevations of the water curtain system and the main caverns need to be determined based on a comprehensive consideration of the water sealing effect, the thickness of the "water cover layer" formed above the storage caverns, and the amount of inflow toward the caverns from the surrounding rocks. According to the calculation model established based on the cavern project, the elevation of the designed groundwater level was 25 meters above the water curtain system, and the water curtain system was 25 meters above the storage caverns. The numerical simulation results showed that it has a good water sealing effect, and small adjustments to these elevation parameters can also ensure water sealing. The "three major elevations" are both the key parameters in storage caverns design and the key factors affecting water sealing.
Rectangular pipe jacking in complex environment pretreatment and construction technology of boulder area   Collect
NIU Weiwei, HUANG Weihong, CHEN Yulin, LIU Jiankun, CHEN Xuehua
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 50-59.   DOI: 10.19952/j.cnki.2096-5052.2024.03.06
Abstract ( 20 )     PDF (11808KB) ( 14 )  
To solve the construction difficulties of the rectangular pipe jacking in the boulder area in a complex geological environment, based on the pipe jacking project of the pedestrian passage of the Qieye Ridge in the transformation project of the Harbor Avenue in Xiangzhou District, Zhuhai City, Guangdong Province, the construction risks encountered by boulders during pipe jacking excavation were analyzed in conjunction with the actual engineering conditions. According to the size, shape, and distribution of the boulders, the advantages and disadvantages of different construction schemes when encountering boulders during pipe jacking construction process were discussed, and the engineering costs, environmental impact, construction difficulty, safety, and applicability of five obstacle handling schemes were systematically compared and analyzed. The best handling method suitable for this case project was selected to achieve the purpose of improving efficiency, reducing costs, and avoiding risks. The case project adopted the pre-treatment construction technology of the down-the-hole hammer in the casing technology to crush and remove the boulders, and successfully restored the pipe jacking excavation construction. This solution could ensure efficient, safe, and orderly clearance work and had excellent application effects.
Failure mechanism of tailrace surge chamber in Jinchuan Hydropower Station based on microseismic monitoring and DFN simulation   Collect
PI Jintian, XU Nuwen, ZHANG Fengshou, MAO Haoyu, ZHOU Xiang, LI Huailiang, BO Wu
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 60-72.   DOI: 10.19952/j.cnki.2096-5052.2024.03.07
Abstract ( 18 )     PDF (12621KB) ( 5 )  
In order to obtain the failure mechanism of the rock stability under the influence of carbonaceous phyllite band in tailrace surge chamber of Jinchuan Hydropower Station, an insitu microseismic(MS)monitoring system was established. In the construction period, the temporal and spatial distribution of MS events and source parameters were acquired during the excavation in underground caverns. A 3D discrete element numerical model was built. Discrete fracture network(DFN)was added for the weak fault of the underground caverns to build joint fissure, and the displacement and plastic zone distribution were obtained. The synthetic MS events induced by the excavation validated the failure mode and damage of the weak fault. The results suggested that there was a strong correlation between the spatial distribution of insitu MS events and the failure region of rock. The source parameter energy ratio of transverse and longitudinal waves of MS events revealed that the main failure mode of tailrace surge chamber was tension failure. The maximum deformation and plastic zone were obtained by discrete element numerical simulation, and the result was mutually verified with the MS monitoring results. The synthetic MS events generated by DFN-discrete element coupling method revealed the potential failure area of rock, and the result was in good agreement with the actual spatial distribution of MS events.
Identifying the water content interval of muck based on the image of belt slag   Collect
SU Guojun, GONG Qiuming, ZHOU Xiaoxiong, WU Weifeng, CHEN Peixin
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 73-81.   DOI: 10.19952/j.cnki.2096-5052.2024.03.08
Abstract ( 18 )     PDF (13310KB) ( 6 )  
In order to identify the soil water content in real time, the improved muck with three kinds of fine sand with initial water content were prepared by adding foam with different foam injection ratios, the slag experiment was carried out through the belt slag test platform, the muck images on the belt were obtained, the muck samples were collected accordingly to determine the water content, the water content interval was marked at 1% intervals, and the data set of muck images and water content intervals was established. Through image preprocessing, the texture features of the main image and the edge image of the muck were extracted by using the method of simplified local intensity order pattern combined with completed local binary pattern, and the support vector machine model of particle swarm optimization was selected as the base model, and the integrated learning model for the recognition of water content of the muck was further constructed, which improved the recognition accuracy, and the recognition error of the water content was ±1%.
Impact dynamic response characteristics of assembled tunnel joints   Collect
ZHOU Yuzhu, PENG Zimao, QUAN Jiaying, QIN Maojiang, HUANG Zhen
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 82-91.   DOI: 10.19952/j.cnki.2096-5052.2024.03.09
Abstract ( 20 )     PDF (10685KB) ( 8 )  
To explore the dynamic response characteristics of three kinds of assembled tunnel joints(self-weight mortise-tenon joint, bolt mortise-tenon joint and steel plate mortise-tenon joint)under impact load, ABAQUS software was utilized to simulate the dynamic response process and damage characteristics of three kinds of joints under impact load, and the impact resistance of three kinds of joints was compared. The results indicated that the response of the assembled tunnel joint under impact could be divided into initial impact stage, development stage and stable stage. In this process, the joint was affected by impact force, reaction force and inertia force. The dynamic response characteristics of the three types of joints were influenced by the mass and velocity of the impact. When the impact mass exceeds 1 400 kg and the impact velocity exceeds 60 km/h, the central displacement, opening, and damage range of the joints significantly increased. The steel plate tenon and mortise joint was the structure with the best impact resistance among the three types of joints. In the anti-impact design of assembled tunnel structures, it was necessary to focus on enhancing the stiffness of the joints.
Influence of incorporating valve pressure on the tunnel waterproof and drainage   Collect
JI Luling, YOU Wei, LI Xiaoyi, ZENG Yuanchi, LIU Yuchuan, ZHANG Kai
Hazard Control in Tunnelling and Underground Engineering. 2024, 6 (3): 92-102.   DOI: 10.19952/j.cnki.2096-5052.2024.03.10
Abstract ( 26 )     PDF (10451KB) ( 13 )  
The current active control waterproof and drainage system was difficult to achieve dynamic control of water inflows and pressure, which could lead to tunnel cracking and leakage, a pressure valve was installed at the circumferential drainage blind pipe in order to control the water inflow and water pressure. Additionally, the formula for calculating the tunnel water inflow was derived. Using the conformal transformation, the seepage field formula of the surrounding rock was derived from the basic differential equation of the stable seepage field. The tunnel seepage calculation model was further established, incorporating the parameters of circumferential drainage blind pipe spacing and discharge pressure.The calculation formula of tunnel drainage volume and external water pressure of the external water pressure of secondary lining and tunnel water inflow calculation formula was obtained.The decomposition and numerical simulation techniques confirmed the analytical solution's reasonableness.This served as the foundation for the establishment of a tunnel drainage design solution with a pressure valve. The findings indicated that the water pressure and flow rate were significantly impacted by the geotextile permeability coefficient and the spacing between drainage pipes. It was recommended to select a geotextile which permeability coefficient of at least 500 μm/s, and the spacing between drainage blind pipes could be adjusted based on the drainage pressure. The grouting ring thickness could be decreased by adding a pressure valve in comparison to the current active control waterproof and drainage.
2024
Vol.6
No.2 
2024-06-20
pp.1-112
No.1
2024-03-20
pp.1-104
2023
Vol.5
No.4 
2023-12-20
pp.1-92
No.3
2023-09-20
pp.1-92
No.2
2023-06-20
pp.1-98
No.1
2023-03-20
pp.1-106
2022
Vol.4
No.4 
2022-12-20
pp.1-106
No.3
2022-09-20
pp.1-114
No.2
2022-06-20
pp.1-106
No.1
2022-01-20
pp.1-102
2021
Vol.3
No.4 
2021-12-20
pp.1-94
No.3
2021-09-10
pp.1-118
No.2
2021-06-20
pp.1-96
No.1
2021-03-20
pp.1-98
2020
Vol.2
No.4 
2020-12-20
pp.1-94
No.3
2020-09-20
pp.1-106
No.2
2020-06-20
pp.1-96
No.1
2020-03-20
pp.1-110
2019
Vol.1
No.4 
2019-12-20
pp.1-108
No.3
2019-09-20
pp.1-122
No.2
2019-06-20
pp.1-130
No.1
2019-01-20
pp.1-126


Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Engineering performance of flowable backfill soil based on shield muck
ZENG Changnü, WANG Zizheng, CAO Shuoqian, REN Lei
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (4): 1-8.   DOI: 10.19952/j.cnki.2096-5052.2023.04.01
Abstract   PDF (4242KB)  
This study aimed to enhance shield muck by incorporating foam agent and active magnesium oxide. The fluidity, bleeding rate and compressive strength of the improved soil under different foam agent and active magnesium oxide content were obtained by fluidity, bleeding rate and compressive strength test. It was showed that the improved flowable backfill soil exhibited excellent fluidity and solidified strength. By adjusting the content of foam agent and active magnesium oxide, the flowable backfill soil with fluidity ranging from 180 mm to 320 mm, bleeding rate below 5%, and 28-day compressive strength between 0.6 MPa and 1.2 MPa could be obtained.
Reference | Related Articles | Metrics
Research and application of coal mine roadway oil storage technology system
HAN Guiwu, GUO Shutai, ZHOU Rou
Hazard Control in Tunnelling and Underground Engineering   
Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction
ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (1): 32-44.   DOI: 10.19952/j.cnki.2096-5052.2023.01.04
Abstract   PDF (2645KB)  
Aiming at the water inrush disaster that was easy to occur during tunnel construction, the internal law of tunnel water inrush was analyzed through the statistics cases of tunnel water inrush. The water inflow in tunnels during construction was predicted by using the methods of long short-term memory neural network(LSTM), Elman neural network and multiple linear regression based on partial least square respectively, and compared with the actual water inflow, then the optimal method for predicting the tunnel water inflow was obtained. The results showed that water inrush accidents were more likely to occur in shallow-buried, long tunnels and extra-long tunnels, and in fault, karst and soluble rock strata. By comparing the prediction results of three different models with the water inflow during tunnel construction, the LSTM model had higher accuracy in predicting the water inflow in tunnels during construction.
Reference | Related Articles | Metrics
A review of several issues for compressed gas energy storage in lined rock cavern
WANG Zhechao, LI Jiaxiang, HAO Xuejiang, LI Minghui, ZHANG Wu, LIU Jie
Hazard Control in Tunnelling and Underground Engineering   
The influence of intumescent fire retardant coating on the fire resistance of assembled frame tunnel
HUANG Zheng, YE Zhangqian, ZHANG Jiawei, PENG Zimao, YAN Zhanshuo
Hazard Control in Tunnelling and Underground Engineering   
Progress and prospect of experimental research on the mechanism of rockburst prevention and control by drilling pressure relief
GONG Fengqiang, HE Zhichao
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (2): 1-23.   DOI: 10.19952/j.cnki.2096-5052.2023.02.01
Abstract   PDF (32718KB)  
The paper reviewed the experimental research progress of prefabricated drilling and high stress real-time drilling in analyzing the mechanism of drilling pressure relief(DPR)for preventing rockburst disasters from the perspectives of macroscopic(mechanical behavior characteristics, failure characteristics, energy evolution)and microscopic(crack evolution), and elaborated on the rationality and effectiveness of DPR for preventing rockburst disasters. Theoretical research and experimental analysis had confirmed that DPR was a key technology for relieving high stress and high energy in deep surrounding rocks, providing a reference for optimizing the application of DPR to prevent rockburst. High stress real-time drilling test method was a more scientific new research method that revealed the internal mechanism of DPR to prevent rockburst. Based on this, six development directions had been proposed for the experimental research on the mechanism of rockburst induction and the current technical conditions of multifunctional testing systems to analyze the mechanism of DPR to prevent rockburst: developing high-stress drilling rig test equipment compatible with true triaxial test systems; considering disturbance factors in high-stress real-time DPR simulation tests; simulating real-time DPR test after excavation of deep tunnels(roadway)("3D six-sided loading-single-sided unloading-real-time DPR" test); constructing an analytical model for the energy evolution of surrounding rock under 3D high stress real-time DPR; exploring the relationship between the spatial size effect of pressure relief drilling and the stress field and internal energy dissipation mechanism of surrounding rock; establishing a computational model for rockburst prevention by DPR in large-scale high-stress surrounding rock based on numerical simulation software.
Reference | Related Articles | Metrics
Coupling analysis between prestress loss of anchor cables and creep of rocks
YANG Wendong, LIU Chuntian, ZHANG Xiang, CHEN Xiaopeng, JING Wenjun, ZHANG Lianzhen, WANG Bingqi, QIN Hao
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (2): 33-41.   DOI: 10.19952/j.cnki.2096-5052.2023.02.03
Abstract   PDF (5871KB)  
Based on rheological mechanics and viscoelastic mechanics, a theoretical model for the coupling of prestress loss of anchor and creep of rock was established. Considering the influence of prestress loss when the prestressed anchor was used to reinforce rock mass, the creep equations of stable creep rock and unstable creep rock were derived, and the formula for calculating prestress of anchor with time was obtained. The results showed that the anchor prestress loss was faster in the period of completion of anchor tension; then the rate of prestress loss was gradually reduced and finally stabilized, and the creep of rock also became stable. By comparing the calculated results with the experimental results in existing literature, the curves of the two were consistent, which verified the correctness of the model. The comparison between the variation of anchor cable prestress at Jinping Hydropower Station and the calculation results of the theoretical model proves the accuracy of this research model applied to engineering examples. The theoretical analysis results established in this paper considering the coupling of anchor cable prestress loss and rock mass creep have a wider application range than previous coupling models, which is not only applicable to stable creep rock, but also to unstable creep rock. The warning of abnormal changes in anchor cable anchoring force and the long-term safe operation of slope engineering have extensive engineering application value.
Reference | Related Articles | Metrics
Thermal and mechanical characteristics analysis of lined high pressure gas storage with different hole spacing
RUAN Quanquan, ZHANG Wen, ZHANG Bin, WANG Qikuan, WANG Hanxun, SHI Guansheng
Hazard Control in Tunnelling and Underground Engineering   
Basic concepts, design principles, and methods of compressed air energy storage underground caverns
SUN Guanhua, ZHU Kaiyuan, JI Wendong, YI Qi, GENG Xuan, YU Xianyang
Hazard Control in Tunnelling and Underground Engineering    2024, 6 (1): 14-23.   DOI: 10.19952/j.cnki.2096-5052.2024.01.02
Abstract   PDF (7725KB)  
This research summarized the basic concepts of compressed air energy storage(CAES)underground caverns from an engineering perspective, analyzed the basic structure of caverns and the main load characteristics of caverns during operation. On this basis, the basic design concept of flexible sealing structure was put forward, and the reliability design method was suggested to be adopted in the construction of underground caverns, which also provided the guidance and design principles, operation, and maintenance of CAES underground caverns.
Reference | Related Articles | Metrics
The deformation pattern of soft rock tunnels with high ground stress
CAI Zunle, LIANG Qingguo, CAO Shenghui, LI Qidi, WU Xiaohui, ZHOU Ren
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (4): 21-32.   DOI: 10.19952/j.cnki.2096-5052.2023.04.03
Abstract   PDF (6661KB)  
In order to study the deformation law of soft rock tunnels within high geo-stress, the paper quantitatively analyzed the relationships between the deformation value with the compressive strength of rock mass, the integrity of surrounding rock, the geo-stress & depth of tunnel, the coefficient of lateral stress, the ground water, the value of basic quality[BQ] and the stiffness of support of soft rock tunnel within high geo-stress based on the statistics of monitoring dada from 68 monitoring sections in 41 tunnels. The results indicated that the large deformation of surrounding rock in soft rock tunnel within high geo-stress was the outcome of the comprehensive action of geological conditions of surrounding rock, the design and construction parameters and other factors. Among them, the in-situ geo-stress, surrounding rock characteristics and supporting countermeasures had the significant influence. The results from the case statistics could preliminarily reveal the development level of the control technology of large deformation of soft rock traffic tunnel within high geo-stress in China. The deformation of soft rock tunnel within high geo-stress had noticeable time-space effect with the variation patterns from the rapid growth stage to the continuing growth stage and then the stabilizing stage at last with time. The deformation coordination coefficient was mostly affected by the excavation with large fluctuations in the early stage, but tended to be stable very soon after the inverted arch was constructed which also verified and emphasized the key role of the ring closure to the deformation control from another perspective. With the increase of large deformation grade, the proportion of the deformation after construction of inverted arch decreased.
Reference | Related Articles | Metrics


Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction
ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (1): 32-44.   DOI: 10.19952/j.cnki.2096-5052.2023.01.04
Abstract   PDF (2645KB)  
Aiming at the water inrush disaster that was easy to occur during tunnel construction, the internal law of tunnel water inrush was analyzed through the statistics cases of tunnel water inrush. The water inflow in tunnels during construction was predicted by using the methods of long short-term memory neural network(LSTM), Elman neural network and multiple linear regression based on partial least square respectively, and compared with the actual water inflow, then the optimal method for predicting the tunnel water inflow was obtained. The results showed that water inrush accidents were more likely to occur in shallow-buried, long tunnels and extra-long tunnels, and in fault, karst and soluble rock strata. By comparing the prediction results of three different models with the water inflow during tunnel construction, the LSTM model had higher accuracy in predicting the water inflow in tunnels during construction.
Reference | Related Articles | Metrics
Numerical simulation of dynamic fracture behavior of rock dual-hole blasting based on peridynamic theory
SUN Gang, WANG Junxiang, MENG Xiangzhu, GUO Lianjun, SUN Jie
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (2): 42-58.   DOI: 10.19952/j.cnki.2096-5052.2023.02.04
Abstract   PDF (17421KB)  
Peridynamics theory is a new meshless method. Based on the microelastic brittle model inperidynamics, a kernel function that can reflect the internal length effect of the long-range forces varies with the distance between material points is introduced. The numerical solution program of dual-borehole rock blasting under high in-situ stress state was written by Fortran language to investigate the dynamic deformation and failure process of dual-borehole rock blasting under different borehole distance, in-situ stress states and lateral pressure coefficients, and the whole process of crack initiation, propagation and coalescence in dual-borehole rock blasting was obtained. The results showed that the crack area enlarges from 306.59 cm2 to 449.07 cm2 with the increase of the borehole spacing from 100 mm to 200 mm, whereas the borehole spacing rised to 200 mm, the cracks was unable to throughout which was produced by dual-borehole. At the hydrostatic in-situ stress levels, with the increase of in-situ stress, the crack propagation time reduced, the initial time of rock failure postponed, the damage area reduced from 123.24 cm2 to 32.96 cm2, and the main crack propagation length decreased from 87.73 mm to 14.42 mm. Under non-hydrostatic in-situ stress, the crack propagation tended to the direction of maximum principal stress. With the increase of lateral pressure coefficient, the damage area diminished and the directivity of crack propagation became increasingly apparent.The in-situ stress inhibited the crack propagation of rock, and the non-hydrostatic in-situ stress exerted a guiding effect on the crack propagation. In reality, the efficiency of rock fragmentation will be improved through selecting proper borehole distance and arranging the blasting holes along the direction of maximum principal stress which are beneficial to forming a new free surface.
Reference | Related Articles | Metrics
Optimization of ventilation mode during construction of large water curtain grotto storage based on Ventsim
ZHAO Xingdong, DOU Xiang, LI Yong, WANG Lijun
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (1): 8-17.   DOI: 10.19952/j.cnki.2096-5052.2023.01.02
Abstract   PDF (3621KB)  
Aiming at the selection of ventilation modes during the construction of a large underground cavern storage, according to the ventilation design of a large underground cavern storage, on the basis of comparing the advantages and disadvantages of the extraction type, the press-in type and the mixed type ventilation mode, and according to each ventilation mode calculate the air volume according to the method was calculated, and the ventilation mode of each stage of the construction of the large underground cavern storage was determined. A Ventsim numerical simulation model for ventilation of a large underground cavern storage was constructed, and numerical simulations were conducted to study the dynamic evolution law of wind flow in a large underground cavern storage with different ventilation modes in different construction stages, and the differences in different construction stages were analyzed. The ventilation effects of the ventilation methods were compared and analyzed, and the ventilation methods in different construction stages were optimized. The numerical simulation results showed that the optimal ventilation mode in the first construction stage was press-in ventilation, the optimal ventilation mode in the second construction stage was mixed ventilation, and the optimal ventilation mode in the third and fourth construction stages were extraction ventilation. At the same time, it was verified that the effect of wind resistance, air volume and air network efficiency of each ventilation method in different construction stages was optimal, which provided a scientific basis for the ventilation design of large underground water-sealed caverns during the construction period.
Reference | Related Articles | Metrics
Progress and prospect of experimental research on the mechanism of rockburst prevention and control by drilling pressure relief
GONG Fengqiang, HE Zhichao
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (2): 1-23.   DOI: 10.19952/j.cnki.2096-5052.2023.02.01
Abstract   PDF (32718KB)  
The paper reviewed the experimental research progress of prefabricated drilling and high stress real-time drilling in analyzing the mechanism of drilling pressure relief(DPR)for preventing rockburst disasters from the perspectives of macroscopic(mechanical behavior characteristics, failure characteristics, energy evolution)and microscopic(crack evolution), and elaborated on the rationality and effectiveness of DPR for preventing rockburst disasters. Theoretical research and experimental analysis had confirmed that DPR was a key technology for relieving high stress and high energy in deep surrounding rocks, providing a reference for optimizing the application of DPR to prevent rockburst. High stress real-time drilling test method was a more scientific new research method that revealed the internal mechanism of DPR to prevent rockburst. Based on this, six development directions had been proposed for the experimental research on the mechanism of rockburst induction and the current technical conditions of multifunctional testing systems to analyze the mechanism of DPR to prevent rockburst: developing high-stress drilling rig test equipment compatible with true triaxial test systems; considering disturbance factors in high-stress real-time DPR simulation tests; simulating real-time DPR test after excavation of deep tunnels(roadway)("3D six-sided loading-single-sided unloading-real-time DPR" test); constructing an analytical model for the energy evolution of surrounding rock under 3D high stress real-time DPR; exploring the relationship between the spatial size effect of pressure relief drilling and the stress field and internal energy dissipation mechanism of surrounding rock; establishing a computational model for rockburst prevention by DPR in large-scale high-stress surrounding rock based on numerical simulation software.
Reference | Related Articles | Metrics
Numerical analysis of corrugated steel reinforced shield tunnel under complex stress path
WEI Gang, XU Tianbao, ZHANG Zhiguo
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (2): 24-32.   DOI: 10.19952/j.cnki.2096-5052.2023.02.02
Abstract   PDF (6844KB)  
In order to probe into the similarities and differences of the stress-deformation law and the reinforcement effect of shield tunnel strengthened with corrugated steel under complex stress paths, a refined model of three-ring staggered joints was established based on the finite element software MIDAS GTS NX, the effect of corrugated steel reinforcement was evaluated from the angle of convergent deformation, corrugated steel stress and plastic deformation of segments before and after reinforcement, the stress and deformation evolution of shield tunnel strengthened with corrugated steel under loading and unloading conditions were analyzed. The results showed that the distribution of the maximum convergent deformation was different in the complex loading environment. The waist was the main part of the loading, and the top and bottom was the main part of the unloading under unloading, the effect of corrugated steel reinforcement was better than that under surcharge loading, and the maximum reinforcement efficiency could reach 70%, the convergent deformation and the stress development of corrugated steel with different plate thicknesses were similar and showed a linear increasing trend, while corrugated steel could effectively delay the plastic development of concrete, however, the ability of stagger suppression between rings under unloading condition was weak.
Reference | Related Articles | Metrics
Large deformation characteristics and deformation control of tunnel in complex stress environment
PEI Chao, XIAO Yong, ZHU Zhiyong, LIU Yanping, YANG Wenbo, ZHAO Liangliang
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (2): 89-98.   DOI: 10.19952/j.cnki.2096-5052.2023.02.08
Abstract   PDF (15148KB)  
Taking the work area of 3# Transverse Gallery of Zhongyi Tunnel of Lijiang-Shangrila Railway as the engineering background, the large deformation characteristics of parallel adit and main tunnel under different section forms were analyzed by field deformation monitoring. It was found that the large deformation characteristics of metamorphic basalt tunnel with schistosity were obvious under extremely high ground stress environment, and the horizontal convergence was the main deformation around the tunnel. The effectiveness of tunnel section optimization and support reinforcement measures was verified by numerical simulation verification. The results showed that the deformation of tunnel surrounding rock could be reduced by reducing the sudden curvature change of tunnel section and making the tunnel section symmetrical, adding foot-lock anchor bolts and increasing the strength of steel mesh could effectively control tunnel deformation. Under the joint action, more than 65% of the deformation of tunnel surrounding rock could be controlled, reducing the distribution of plastic zones in the large deformation section of the surrounding rock. These measures had a good control effect on the large deformation of the Zhongyi Tunnel which could provide guidance for railway tunnel construction in complex stress environment.
Reference | Related Articles | Metrics
Engineering performance of flowable backfill soil based on shield muck
ZENG Changnü, WANG Zizheng, CAO Shuoqian, REN Lei
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (4): 1-8.   DOI: 10.19952/j.cnki.2096-5052.2023.04.01
Abstract   PDF (4242KB)  
This study aimed to enhance shield muck by incorporating foam agent and active magnesium oxide. The fluidity, bleeding rate and compressive strength of the improved soil under different foam agent and active magnesium oxide content were obtained by fluidity, bleeding rate and compressive strength test. It was showed that the improved flowable backfill soil exhibited excellent fluidity and solidified strength. By adjusting the content of foam agent and active magnesium oxide, the flowable backfill soil with fluidity ranging from 180 mm to 320 mm, bleeding rate below 5%, and 28-day compressive strength between 0.6 MPa and 1.2 MPa could be obtained.
Reference | Related Articles | Metrics
Comprehensive treatments of double shield TBM construction in adverse geological sections
YANG Jihua, YAN Changbin, QI Sanhong, GUO Weixin, YANG Fengwei
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (2): 59-70.   DOI: 10.19952/j.cnki.2096-5052.2023.02.05
Abstract   PDF (7361KB)  
Aiming at the poor geological conditions of water conveyance tunnel in Lanzhou water source construction engineering by double shield TBM excavation, the comprehensive methods and treatments were put forward by data statistics, engineering analogies, and other methods. Before TBM tunneling, F3 fault zone and F8 fault zone were excavated by drilling and blasting method. After initial support which guaranteed the stability of surrounding rock, TBM slided through and installed segments. Based on geological analysis along tunnel, combination the observation of tunneling face, rock muck analysis and tunneling parameter analysis, the geological conditions of surrounding rock in front of tunneling face were comprehensively predicted by using three-dimension seismic method and three-dimensional resistivity method. The principle of "drainage first, drainage and plugging combined" was adopted, the variable slope drainage system was established, the operation mode of the drainage system was determined according to the amount of water gushing. According to the characteristics of the front shield blocked, the method of releasing surrounding rock pressure by manual excavation of the heading tunnel from the telescopic shield was adopted to make the TBM out of blocked. Based on identifying geological conditions, the use of chemical grouting and cement grouting consolidation broken surrounding rock, controlling TBM tunneling parameters, slow tunneling through the fracture zone. TBM tunnneling practice shows that the adopted technology is effective and the poor geological conditions have not caused serious consequences for TBM.
Reference | Related Articles | Metrics
Coupling analysis between prestress loss of anchor cables and creep of rocks
YANG Wendong, LIU Chuntian, ZHANG Xiang, CHEN Xiaopeng, JING Wenjun, ZHANG Lianzhen, WANG Bingqi, QIN Hao
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (2): 33-41.   DOI: 10.19952/j.cnki.2096-5052.2023.02.03
Abstract   PDF (5871KB)  
Based on rheological mechanics and viscoelastic mechanics, a theoretical model for the coupling of prestress loss of anchor and creep of rock was established. Considering the influence of prestress loss when the prestressed anchor was used to reinforce rock mass, the creep equations of stable creep rock and unstable creep rock were derived, and the formula for calculating prestress of anchor with time was obtained. The results showed that the anchor prestress loss was faster in the period of completion of anchor tension; then the rate of prestress loss was gradually reduced and finally stabilized, and the creep of rock also became stable. By comparing the calculated results with the experimental results in existing literature, the curves of the two were consistent, which verified the correctness of the model. The comparison between the variation of anchor cable prestress at Jinping Hydropower Station and the calculation results of the theoretical model proves the accuracy of this research model applied to engineering examples. The theoretical analysis results established in this paper considering the coupling of anchor cable prestress loss and rock mass creep have a wider application range than previous coupling models, which is not only applicable to stable creep rock, but also to unstable creep rock. The warning of abnormal changes in anchor cable anchoring force and the long-term safe operation of slope engineering have extensive engineering application value.
Reference | Related Articles | Metrics
Inducement and prevention technology of secondary disasters of water and mud inrush in tunnel
HAO Junsuo, LIU Junfeng, LIU Hao, ZHAO Mingfan
Hazard Control in Tunnelling and Underground Engineering    2023, 5 (4): 81-92.   DOI: 10.19952/j.cnki.2096-5052.2023.04.09
Abstract   PDF (3198KB)  
In order to explore the main influencing factors and control methods of secondary disasters of water and mud inrush in underground engineering, the prevention and control technology of secondary disasters of water and mud inrush was proposed by summarizing relevant cases since 2010 and the disaster-inducing environment and factors were summarized. Taking the secondary water and mud inrush of Shizishan Tunnel crossing FⅢ-71 fault in central Yunnan as an example, the causes of disasters in this geological section were explored, and the evolution process of secondary disasters was divided into three stages: gestation stage, latent stage and induction stage. The methods of improving the state of the external environment, blocking the evolution path of the disaster and increasing the bearing capacity of the anti-outburst layer were put forward to prevent the recurrence of water outburst and mud outburst, which provided experience guidance for the treatment of the secondary disaster of water outburst and mud outburst.
Reference | Related Articles | Metrics

  News More  
  Meeting More  
» 2024 Forum for Youth Scholars of Geotechnical Engineering in Guangdong-Hong Kong-Macao Greater Bay
  2024-06-19
» 2023IFUS
  2023-12-04
» The 11th National Conference on Soil Dynamics
  2023-11-17
» 13th Asian Rock Mechanics Symposium
  2023-11-17
» World Tunnel Congress 2024
  2023-11-16
» The 10th Internationale Conference on Infrastructure Development of Underground Space
  2023-11-09
» The 14th International Symposium on Pipeline Engineering and Trenchless Technology
  2023-11-09
» Internationale Symposium on Environmental,Geological and Geotechnical Engineering
  2023-11-06
Links  
Beijing Magtech S&T Co., Ltd.
Shandong University
National Press and Publication Administration
Shandong University Scientific Journals Press
School of Civil Engineering,Shandong University
Journal of Shandong University(Engineering Science)
Transportation Planning & Design Research Center of Shandong University
School of Qilu Transportation,Shandong University
Ministry of Education of the People's Republic of China
Website Copyright © Hazard Control in Tunnelling and Underground Engineering.
Address: The Editorial Office of "Hazard Control in Tunneling and Underground Engineering" B733, Shandong University Central Campus, 27 Shanda South Road, Jinan City, Shandong Province, China: 250100 Tel: 0531-88366735 E-mail: tunnel@sdu.edu.cn
Powered by Beijing Magtech Co. Ltd