Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (3): 111-118    DOI: 10.19952/j.cnki.2096-5052.2021.03.12
  先进计算方法在隧道与岩土工程中的应用 本期目录 | 过刊浏览 | 高级检索 |
三维并行显式非连续变形分析接触判断与云计算研究进展
王熙1,2,李华明1,武威2,3,4*,朱合华2,3,4,刘发波1,张洪2
1. 四川乐汉高速公路有限责任公司, 四川 乐山 614000;2. 同济大学地下建筑与工程系, 上海 200092;3. 同济大学土木工程防灾国家重点实验室, 上海 200092;4. 同济大学岩土及地下工程教育部重点实验室, 上海 200092
Research progress of contact detection and cloud computing for 3D parallel explicit discontinuous deformation analysis
WANG Xi1,2, LI Huaming1, WU Wei2,3,4*, ZHU Hehua2,3,4, LIU Fabo1, ZHANG Hong2
1. Sichuan Lehan Expressway Co., Ltd., Leshan 614000, Sichuan, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
3. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China;
4. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
下载:  PDF (4537KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维并行显式非连续变形分析方法(three dimensional parallel explicit discontinuous deformation analysis,3D-PEDDA)作为隧道与地下工程数值模拟中强大的数值方法之一,一直存在接触判断效率低、接触不确定性和难以处理凹体等问题,其整体计算效率也是瓶颈之一。介绍了多覆盖方法、最后侵入面法和局部凸分解方法,将其引进3D-PEDDA来解决接触问题。为提升整体计算效率,新的3D-PEDDA程序经过改编以统一数据读写模式,并通过添加预编译指令的方法实现并行化。新的3D-PEDDA程序全部在Linux系统上进行开发,并在简单的云端虚拟机上进行初步试验。数值算例验证了所开发的3D-PEDDA的效率、精度和运行在更高性能的云主机上的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王熙
李华明
武威
朱合华
刘发波
张洪
关键词:  3D-PEDDA  接触判断  接触不确定性  并行计算  云计算    
Abstract: Contact detection and computation efficiency has always been the key problem of three-dimensional discontinuous deformation analysis(3D-PEDDA), which is one of the most powerful numerical methods. Contact detection suffers from low efficiency, contact indeterminacy, and the incapability to deal with concave blocks. The efficiency of the entire DDA program is also one of the most crucial bottlenecks. This paper introduced the multi-cover method and the last entrance plane method to deal with lacking of efficiency and indeterminacy of contact detection, as well as the local convex decomposition method for concave polyhedron. In addition, in order to improve the computational efficiency, 3D explicit DDA was adapted to unify data reading and writing mode, and parallelized by adding precompile instructions. In order to expand to high-performance cloud computing and supercomputers, the new 3D-PEDDA programs were all developed on Linux system, and preliminary experiments were carried out on a simple cloud virtual machine. Numerical examples verified the efficiency and accuracy of the newly developed parallel 3D-PEDDA, and it is promising that it can be easily extended to high-performance virtual machines or supercomputers to realize the analysis of large-scale projects.
Key words:  3D-PEDDA    contact detection    contact indeterminacy    parallel computing    cloud computing
收稿日期:  2021-07-02      修回日期:  2021-09-08      发布日期:  2021-09-20     
中图分类号:  TU457  
基金资助: 国家自然科学基金资助项目(41902275,4182780021);国家自然科学基金委员会-中国铁路总公司高速铁路基础研究联合基金资助项目(U1934212);贵州省重大科技专项基金资助项目(黔科合重大专项字[2018]3011);四川乐汉高速公路有限责任公司科研专项基金资助项目(SRIG2019GG0004);中电建冀交高速公路投资发展有限公司太行山高速科研专项基金资助项目(TH-201908);中国国家铁路集团有限公司科技研究开发计划课题资助项目(P2019G038);中铁第一勘察设计院集团有限公司科研专项基金资助项目(19-21-1,2021RJ06)
通讯作者:  武威(1986— ),男,河北衡水人,博士,副研究员,主要研究方向为岩石隧道监测、数值模拟与智能建造.   
作者简介:  王熙(1995— ),男,山东菏泽人,博士研究生,主要研究方向为非连续变形分析. E-mail:xiwang_chn@foxmail.com.
引用本文:    
王熙, 李华明, 武威, 朱合华, 刘发波, 张洪. 三维并行显式非连续变形分析接触判断与云计算研究进展[J]. 隧道与地下工程灾害防治, 2021, 3(3): 111-118.
WANG Xi, LI Huaming, WU Wei, ZHU Hehua, LIU Fabo, ZHANG Hong. Research progress of contact detection and cloud computing for 3D parallel explicit discontinuous deformation analysis. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 111-118.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I3/111
[1] SHI G H. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures[J]. Engineering Computations, 1992, 9(2):157-168.
[2] 周宗青,李利平,石少帅,等.隧道突涌水机制与渗透破坏灾变过程模拟研究[J].岩土力学,2020,41(11):3621-3631. ZHOU Zongqing, LI Liping, SHI Shaoshuai, et al. Study on tunnel water inrush mechanism and simulation of seepage failure process[J].Rock and Soil Mechanics, 2020, 41(11):3621-3631.
[3] 殷坤龙,姜清辉,汪洋.滑坡运动过程仿真分析[J]. 地球科学, 2002, 27(5): 632-636. YIN Kunlong, JIANG Qinghui, WANG Yang. Simulation of landslide movement process by discontinuous deformation analysis[J]. Earth Science, 2002, 27(5): 632-636.
[4] 张开雨,夏开文,刘丰. 基于Voronoi多边形离散的DDA方法模拟岩石破坏[J]. 岩石力学与工程学报, 2021, 40(4): 725-738. ZHANG Kaiyu, XIA Kaiwen, LIU Feng. Simulation of rock failure by Voronoi-based discontinuous deformation analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 725-738.
[5] 刘泉声,蒋亚龙,何军. 非连续变形分析的精度改进方法及研究趋势[J]. 岩土力学, 2017, 38(6):1746-1761. LIU Quansheng, JIANG Yalong, HE Jun. Precision improvement methods and research trends of discontinuous deformation analysis[J]. Rock and Soil Mechanics, 2017, 38(6): 1746-1761.
[6] WU W, ZHU H H, LIN J S, et al. Tunnel stability assessment by 3D DDA-key block analysis[J]. Tunnelling and Underground Space Technology, 2018, 71: 210-214.
[7] ZHU H H, WU W, CHEN J Q, et al. Integration of three dimensional discontinuous deformation analysis(DDA)with binocular photogrammetry for stability analysis of tunnels in blocky rockmass[J]. Tunnelling and Underground Space Technology, 2016, 51: 30-40.
[8] LIU S G, LI Z J, ZHANG H, et al. A 3-D DDA damage analysis of brick masonry buildings under the impact of boulders in mountainous areas[J]. Journal of Mountain Science, 2018, 15(3): 657-671.
[9] WU W, ZHU H H, ZHUANG X Y, et al. A multi-shell cover algorithm for contact detection in the three dimensional discontinuous deformation analysis[J]. Theoretical and Applied Fracture Mechanics, 2014, 72: 136-149.
[10] WANG X, WU W, ZHU H H, et al. Contact detection between polygonal blocks based on a novel multi-cover system for discontinuous deformation analysis[J]. Computers andGeotechnics, 2019, 111:56-65.
[11] WANG X, WU W, ZHU H H, et al. Acceleration of contact detection between arbitrarily shaped polyhedra based on multi-cover methods in three dimensional discontinuous deformation analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104387.
[12] BAO H R, ZHAO Z Y. An alternative scheme for the corner-corner contact in the two-dimensional discontinuous deformation analysis[J]. Advances in Engineering Software, 2010, 41(2): 206-212.
[13] BAO H R, ZHAO Z Y. The vertex-to-vertex contact analysis in the two-dimensional discontinuous deformation analysis[J]. Advances in Engineering Software, 2012, 45(1): 1-10.
[14] FAN H, HE S M. An angle-based method dealing with vertex–vertex contact in the two-dimensional discontinuous deformation analysis(DDA)[J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 2031-2043.
[15] WANG X, WU W, ZHU H H, et al. The last entrance plane method for contact indeterminacy between convex polyhedral blocks[J]. Computers and Geotechnics, 2020, 117: 103283.
[16] XIA M Y, CHEN G Q, GUO L X. Improvement of vertex-to-vertex contact processing in two-dimensional DDA[J]. Computers and Geotechnics, 2021, 135: 104200.
[17] ZHANG H, ZHANG J, WU W, et al. Angle-based contact detection in discontinuous deformation analysis[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5545-5569.
[18] MIKOLA R G, SITAR N. Explicit three dimensional discontinuous deformation analysis for blocky system[C] //Proceedings of the 47th US Rock Mechanics / Geomechanics Symposium.San Francisco, USA:Elsevier B.V., 2013: 1320-1327.
[19] 张洪, 张迎宾, 郑路,等. 基于中心差分方案的显式三维非连续变形分析法[J]. 岩石力学与工程学报, 2018, 37(7): 1649-1658. ZHANG Hong, ZHANG Yingbin, ZHENG Lu, et al. Explicit three-dimensional discontinuous deformation analysis based on a central difference scheme[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1649-1658.
[20] 付晓东, 盛谦, 张勇慧. 基于OpenMP的非连续变形分析并行计算方法[J]. 岩土力学, 2014, 35(8): 2401-2407. FU Xiaodong, SHENG Qian, ZHANG Yonghui. Parallel computing method for discontinuous deformation analysis using OpenMP[J]. Rock and Soil Mechanics, 2014, 35(8): 2401-2407.
[21] PENG X Y, CHEN G Q, YU P C, et al. A full-stage parallel architecture of three-dimensional discontinuous deformation analysis using OpenMP[J]. Computers and Geotechnics, 2020, 118: 103346.
[22] ZHENG F, JIAO Y Y, ZHANG X L, et al. Object-oriented contact detection approach for three-dimensional discontinuous deformation analysis based on entrance block theory[J]. International Journal of Geomechanics, 2017, 17(5):1-18.
[23] ZHANG H, CHEN G Q, ZHENG L, et al. Detection of contacts between three-dimensional polyhedral blocks for discontinuous deformation analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 57-73.
[24] SHI G H. Contact theory[J]. Science China Technological Sciences, 2015, 58(9): 1450-1496.
[25] HATZOR Y H, MA G W, SHI G H. Discontinuous deformation analysis in rock mechanics practice[M].[S.l.] : CRC Press, 2017.
[1] 王雪雅, 张一鸣. 裂面优化法稳定性分析——强度折减VS超重力[J]. 隧道与地下工程灾害防治, 2021, 3(3): 94-99.
[2] 赵文强, 周建伟, 袁兆廷, 吴铭祥, 蒋亚龙, 耿大新, 刘长红. 大跨径地下罐室穹顶预留中心岩柱开挖施工围岩稳定性模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 81-89.
[3] 张奇华,张煜,李利平,刘洪亮,石根华. 块体理论在地下洞室围岩稳定分析中的应用进展[J]. 隧道与地下工程灾害防治, 2020, 2(4): 9-18.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn