Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (4): 85-90    DOI: 10.19952/j.cnki.2096-5052.2021.04.10
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
地铁隧道管片表面遮挡物识别系统
黄远远,郝鹏,孙逸
上海勘测设计研究院有限公司, 上海 200434
Recognition system of occlusion on segment surface of subway tunnel
HUANG Yuanyuan, HAO Peng, SUN Yi
Shanghai Investigation, Design & Research Institution Co., Ltd., Shanghai 200434, China
下载:  PDF (4558KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于图像处理的地铁隧道灾害识别受地铁隧道管片表面遮挡物的影响,导致灾害特征识别不准确。为减少遮挡物对灾害识别的影响,根据地铁隧道表面各类遮挡物的特点,使用Mean-shift目标跟踪算法确定遮挡物中心位置进而确定其区域,并利用级联分类器对遮挡物进行快速识别,将所有遮挡物标记。本方法能够快速将地铁隧道管片图像中遮挡物进行识别并标记,存在未能准确识别情况时,算法会智能提示并记录未识别的图像便于后续人工辅助标记。试验表明,本方法可以快速批量处理地铁隧道管片图像,在地铁隧道灾害识别中,可以避免遮挡物区域的影响,具有一定的工程实用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄远远
郝鹏
孙逸
关键词:  目标跟踪  隧道管片  遮挡物  识别    
Abstract: The subway tunnel disaster recognition based on image processing is affected by the occlusion on the surface of the subway tunnel segment, which leads to inaccurate disaster feature recognition. In order to reduce the influence of occlusion on disaster recognition, according to the characteristics of various occlusions on the surface of the subway tunnel, the Mean-shift target tracking algorithm was used to determine the center position of the occlusion and then determine its area. The cascade classifier was used to quickly identify the occlusion and mark all the occlusions. This method could quickly identify and mark the occluded objects in the subway tunnel segment image. When there was no accurate identification, the algorithm would intelligently prompt and record the unidentified image for subsequent artificial auxiliary marking. Experiments showed that this method could quickly batch process subway tunnel segment image. In the disaster identification of subway tunnel, the influence of shelter area can be avoided, and it has certain engineering practicability.
Key words:  target tracking    tunnel segment    occlusion    recognition
收稿日期:  2021-05-28      修回日期:  2021-07-21      发布日期:  2021-12-20     
中图分类号:  U45  
作者简介:  黄远远(1992— ),男,安徽宿州人,硕士,工程师,主要研究方向为隧道工程监测.E-mail:huangyuanyuan@sidri.com
引用本文:    
黄远远, 郝鹏, 孙逸. 地铁隧道管片表面遮挡物识别系统[J]. 隧道与地下工程灾害防治, 2021, 3(4): 85-90.
HUANG Yuanyuan, HAO Peng, SUN Yi. Recognition system of occlusion on segment surface of subway tunnel. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(4): 85-90.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I4/85
[1] 任杰.我国城市地铁建设现状与发展战略分析[J].企业科技与发展,2019(1):278-279.
[2] 王耀东,朱力强,史红梅.基于局部图像纹理计算的隧道裂缝视觉检测技术[J].铁道学报,2018, 40(2):82-90. WANG Yaodong, ZHU Liqiang, SHI Hongmei. Vision detection of tunnel cracks based on local image texture calculation[J]. Journal of the China Railway Society, 2018, 40(2):82-90.
[3] 刘学增,叶康.隧道衬砌裂缝的远距离图像测量技术[J].同济大学学报(自然科学版),2012,40(6):829-836. LIU Xuezeng, YE Kang. A long-distance image measuring technique for crack on tunnel lining[J].Journal of Tongji University(Natural Science), 2012, 40(6):829-836.
[4] 姜会增.基于数字图像处理的铁路桥梁裂缝检测技术[J].铁道建筑,2016(5):82-86. JIANG Huizeng. Railway bridge crack detection technology based on digital image processing[J]. Railway Eng-ineering, 2016(5): 82-86.
[5] 张硕.利用图像处理技术的隧道裂缝检测方法研究[D].镇江:江苏科技大学,2017. ZHANG Shuo. The study on tunnel crack detection method using image processing technology[D].Zhenjiang: Jiangsu University of Science and Technology, 2017.
[6] 王睿,漆泰岳,胡燊,等.隧道衬砌裂缝检测中的背景处理和断点连接算法[J].应用基础与工程科学学报,2017,25(4):742-750. WANG Rui, QI Taiyue, HU Shen, et al. Background processing of tunnel lining crack detection and breakpoint connection algorithm [J]. Journal of Basic Science and Engineering, 2017, 25(4):742-750.
[7] 张伟,李绍铭,王勇.基于Mean-shift改进的自适应目标跟踪算法[J].兰州工业学院学报,2020,27(6):72-77. ZHANG Wei, LI Shaoming, WANG Yong. Improved adaptive target tracking algorithm based on mean-shift[J].Journal of Lanzhou Institute of Technology, 2020, 27(6):72-77.
[8] 王广龙,田杰,朱文杰, 等.RGB-D与MeanShift相结合的实时目标跟踪[J].中南大学学报(自然科学版),2019,50(9):2163-2170. WANG Guanglong, TIAN Jie, ZHU Wenjie,et al. Real-time object tracking combined RGB-D with MeanShift[J]. Journal of Central South University(Science and Technology), 2019, 50(9):2163-2170.
[9] TANNOUCHE A, SBAI K, RAHMOUNE M, et al. Real time weed detection using a boosted cascade of simple features[J].International Journal of Electrical and Computer Engineering(Malacca, Malacca), 2016, 6(6):2755-2765.
[10] 何松华, 章阳. 基于快速检测和AdaBoost的车辆检测[J]. 计算机工程与设计, 2020,41(1): 203-207. HE Songhua, ZHANG Yang. Vehicle detection based on fast detection and AdaBoost[J]. Computer Engineering and Design, 2020, 41(1): 203-207.
[1] 方恩权, 王耀东, 李星言, 马农杰. 地铁盾构隧道渗漏水病害图像识别算法[J]. 隧道与地下工程灾害防治, 2022, 4(4): 28-33.
[2] 林明熠, 刘芳, 孔维钧. 临近基坑地下供水管网变形破坏预警模型[J]. 隧道与地下工程灾害防治, 2022, 4(4): 68-78.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn