Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (1): 95-102    DOI: 10.19952/j.cnki.2096-5052.2022.01.12
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于OpenMP和激光扫描的三维细观混凝土建模技术
谢浩1,2,孙晓彤3,黄永亮1,2,王晓晖1,胡爽1
(1.济南轨道交通集团有限公司, 山东 济南 250014;2.山东大学齐鲁交通学院, 山东 济南 250002;3.中国矿业大学(北京)力学与建筑工程学院, 北京 100083
Three dimensional mesoscopic concrete modeling technology based on OpenMP and laser scanning
XIE Hao1,2, SUN Xiaotong3, HUANG Yongliang1,2, WANG Xiaohui1, HU Shuang1
1. Jinan Rail Transit Group Co., Ltd., Jinan 250014, Shandong, China; 2. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China;  3. School of Mechanics and Civil Engineering, China University of Mining and Technology·Beijing, Beijing 100083, China
下载:  PDF (9143KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高骨料投放效率,提出基于点阵的骨料投放算法。算法的基本思想是将连续的模型计算域通过一系列规则排布的有序点阵离散化,遍历待投骨料所包围的点集,通过这些点的状态标识来判断骨料是否投放成功,有效避开骨料间侵入判断时复杂的几何运算。该算法对由面片构成的多面体骨料具有通用性,通过OpenMP(Open Multi-Processing)并行优化后,骨料投放效率提高65%,将该算法与激光扫描技术结合,构造出的混凝土三维数值模型能够如实反映内部骨料的形态、级配以及空间分布等特征,并且骨料体积分数可达60%,完全满足数值研究中混凝土骨料体积分数需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢浩
孙晓彤
黄永亮
王晓晖
胡爽
关键词:  OpenMP  骨料投放  混凝土  激光扫描  细观结构    
Abstract: In order to build a refined three dimensional mesoscopic concrete model, a lattice-based aggregate placement algorithm was proposed, which was universal to polyhedral aggregates composed of patches, and after parallel optimization through OpenMP, the aggregate placement efficiency was improved about 50%. The basic idea of the algorithm was to discretize the continuous model domain through a series of ordered lattices, traverse the set of points surrounded by the aggregate to be cast, and judge whether the aggregate was put successfully through the status indicators of these points,which effectively avoided the complicated geometric calculations when judging the intrusion between aggregates. Combined this algorithm with laser scanning technology, the constructed three-dimensional numerical model of concrete could faithfully reflect the characteristics of its internal aggregate form, gradation, and spatial distribution, and the aggregate volume content of the model was as high as 60%, which fully met the requirement of concrete in numerical research.
Key words:  OpenMP    aggregate placement    concrete    laser scanning    mesostructure
收稿日期:  2021-09-04      修回日期:  2021-10-18      发布日期:  2022-03-20     
中图分类号:  TB301  
作者简介:  谢浩(1990— ),男,山东青岛人,博士,高级工程师,主要研究方向为岩土及隧道工程稳定性评价. E-mail:qq970227116@163.com
引用本文:    
谢浩, 孙晓彤, 黄永亮, 王晓晖, 胡爽. 基于OpenMP和激光扫描的三维细观混凝土建模技术[J]. 隧道与地下工程灾害防治, 2022, 4(1): 95-102.
XIE Hao, SUN Xiaotong, HUANG Yongliang, WANG Xiaohui, HU Shuang. Three dimensional mesoscopic concrete modeling technology based on OpenMP and laser scanning. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 95-102.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I1/95
[1] WITTMANN F H, ROELFSTRA P E, SADOUKI H. Simulation and analysis of composite structures[J]. Materials Science and Engineering, 1985, 68(2):239-248.
[2] HRENNIKOFF A. Solution of problems of elasticity by the framework method[J]. Journal of Applied Mechanics, 1941, 8(4): 169-175.
[3] MOHAMED A R, HANSEN W. Micromechanical modeling of concrete response under static loading: part 1: model development and validation[J]. ACI Materials Journal, 1999, 96(2):196-203.
[4] MOHAMED A R, HANSEN W. Micromechanical modeling of concrete response under static loading: part Ⅱ—model predictions for shear and compressive loading[J]. ACI Materials Journal, 1999, 96(3):354-358.
[5] 马怀发, 陈厚群, 黎保琨. 混凝土试件细观结构的数值模拟[J]. 水利学报, 2004(10):27-35. MA Huaifa, CHEN Houqun, LI Baokun. Meso-structure numerical simulation of concrete specimens[J]. Journal of Hydraulic Engineering, 2004(10): 27-35.
[6] 马怀发,陈厚群,黎保琨. 细观结构不均匀性对混凝土动弯拉强度的影响[J]. 水利学报, 2005(7):846-852. MA Huaifa, CHEN Houqun, LI Baokun. Influence of meso-structure heterogeneity on dynamic bending strength of concrete[J]. Journal of Hydraulic Engineering, 2005(7):846-852.
[7] 王宗敏. 混凝土应变软化与局部化的数值模拟[J]. 应用基础与工程科学学报, 2000(2): 187-194. WANG Zongmin. Numerical simulation of strain softening and localization for concrete materials[J]. Journal of Basic Science and Engineering, 2000(2): 187-194.
[8] ZHU W C, TANG C A, WANG S Y. Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete[J]. Structural Engineering and Mechanics, 2005, 19(5): 519-533.
[9] ZHU W C, TENG J G, TANG C A. Mesomechanical model for concrete: part I: model development[J]. Magazine of Concrete Research, 2004, 56(6): 313-330.
[10] TENG J G, ZHU W C, TANG C A. Mesomechanical model for concrete: part II: applications[J]. Magazine of Concrete Research, 2004, 56(6): 331-345.
[11] 熊学玉,肖启晟. 基于内聚力模型的混凝土细观拉压统一数值模拟方法[J]. 水利学报, 2019, 50(4): 448-462. XIONG Xueyu, XIAO Qisheng. A unified meso-scale simulation method for concrete under both tension and compression based on cohesive zone model[J]. Journal of Hydraulic Engineering, 2019, 50(4): 448-462.
[12] ZHANG Ru, AI Ting, LI Hegui, et al. 3D reconstruction method and connectivity rules of fracture networks generated under different mining layouts[J].International Journal of Mining Science and Technology, 2013, 23(6): 863-871.
[13] 孙华飞, 杨永明, 鞠杨, 等. 开挖卸荷条件下煤岩变形破坏与能量释放的数值分析[J]. 煤炭学报, 2014, 39(2):258-272. SUN Huafei, YANG Yongming, JU Yang, et al. Numerical analysis of deformation,failure and energy release mechanisms of fractured coal rock under unloading conditions[J]. Journal of China Coal Society, 2014, 39(2):258-272.
[14] JIVKOV A P, ENGELBERG D L, STEIN R, et al. Pore space and brittle damage evolution in concrete[J]. Engineering Fracture Mechanics, 2013, 110: 378-395.
[15] DAI Qingli, YOU Zhanping. Prediction of creep stiffness of asphalt mixture with micromechanical finite-element and discrete-element models[J]. Journal of Engineering Mechanics, 2007, 133(2): 163-173.
[16] MA Huaifa, XU Wenxiang, LI Yuncheng. Random aggregate model for mesoscopic structures and mechanical analysis of fully-graded concrete[J]. Computers & Structures, 2016, 177: 103-113.
[17] XIE Hao, FENG Jili. Implementation of numerical mesostructure concrete material models: a dot matrix method[J]. Materials, 2019, 12(23): 3835.
[18] 中国建筑科学研究院.普通混凝土用砂、石质量及检验方法标准:JGJ52—2006[S]. 北京: 中国建筑工业出版社, 2007.
[19] PAS R V D,STOTZER E, STOTZER E,et al. Using OpenMP-the next step[M]. Cambridge, USA: MIT Press, 2017.
No related articles found!
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn