Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于PSO-RF模型的复杂地层双模盾构土压掘进模式下密封舱压力预测
张斌1,佟彬1,刘国强1,周子豪2*,王树英2
(1. 中铁一局集团城市轨道交通工程有限公司,江苏 无锡 214105;2. 中南大学土木工程学院,湖南 长沙 410075)
Prediction of sealed cabin pressure in the earth pressure excavation mode of dual-mode shield tunneling mode in complex formations based on PSO-RF model
ZHANG Bin1, TONG Bin1, LIU Guoqiang1, ZHOU Zihao2, WANG Shuying2
(1. Urban Rail Transit Engineering Co., Ltd., China Railway First Group Co., Ltd., Wuxi 214000,Jiangsu, China; 2. School of Civil Engineering,Central South University,Changsha 410075,Hunan,China)
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 依托广州地铁7号线2期工程洪圣沙-裕丰围区间隧道工程,采用粒子群算法优化随机森林方法(PSO-RF)建立双模盾构土压掘进模式下密封舱压力预测模型。通过对盾构掘进参数进行相关性分析,筛选出对密封舱压力影响较大的掘进参数,包括螺机转速、螺机扭矩、刀盘转速、推进速度、贯入度、刀盘扭矩、总推力,将筛选出的掘进参数作为预测模型的输入,密封舱压力作为模型的输出,对密封舱压力进行预测。结果表明:采用粒子群算法优化的随机森林PSO-RF预测模型能够有效预测双模盾构密封舱压力;相比于传统神经网络预测模型,PSO-RF模型预测精度更高,平均绝对误差均在10%以内,预测值和实际值的拟合优度R2为0.9014,在预测精度及模型的泛化能力上明显优于BP神经网络。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张斌
佟彬
刘国强
周子豪
王树英
关键词:  双模盾构  密封舱压力  随机森林  粒子群优化算法    
Abstract: Relying on the Hongshengsha-Yufengwei Section Tunnel project of the second phase of Guangzhou Metro Line 7, this paper used the particle swarm optimization random forest method (PSO-RF) to establish a sealed cabin pressure prediction model in the dual-mode shield soil pressure boring mode. Through the correlation analysis of shield boring parameters, the tunneling parameters that had a great influence on the pressure of the sealing chamber were screened out, including screw speed, screw torque, cutterhead speed, propulsion speed, penetration degree, cutterhead torque, and total thrust, and the screened tunneling parameters were used as the input parameters of the prediction model, and the pressure of the sealing chamber was used as the output parameter of the model to predict the pressure of the sealing chamber. The results showed that the random forest PSO-RF prediction model improved by particle swarm algorithm could effectively predict the pressure of the dual-mode shield sealed cabin, and compared with the traditional neural network prediction model, the PSO-RF model had higher prediction accuracy, the average absolute error was within 10%, and the predicted value and the actual goodness-of-fit R2 were 0.9014, which was significantly superior to the BP neural network in terms of prediction accuracy and generalization ability of the model.
Key words:  dual-mode shield    sealed cabin pressure    random forest    particle swarm optimization algorithm
收稿日期:  2022-11-24      修回日期:  2023-02-17      发布日期:  2023-02-17     
中图分类号:  U455  
通讯作者:  周子豪(1997—),男,江苏睢宁人,硕士研究生,主要研究方向为盾构隧道工程。    E-mail:  zihao_zhou25@163.com
作者简介:  张斌(1985—),男,四川南充人,学士,工程师,主要研究方向盾构施工技术管理。E-mail: binnyzh_85@163.com
引用本文:    
张斌, 佟彬, 刘国强, 周子豪, 王树英. 基于PSO-RF模型的复杂地层双模盾构土压掘进模式下密封舱压力预测[J]. 隧道与地下工程灾害防治, .
ZHANG Bin, TONG Bin, LIU Guoqiang, ZHOU Zihao, WANG Shuying. Prediction of sealed cabin pressure in the earth pressure excavation mode of dual-mode shield tunneling mode in complex formations based on PSO-RF model. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-10.
链接本文:  
[1] 张斌,佟彬,刘国强,周子豪,王树英. 基于PSO-RF模型的复杂地层双模盾构土压掘进模式下密封舱压力预测[J]. 隧道与地下工程灾害防治, 2023, 5(1): 97-106.
[2] 钟长平,竺维彬,王俊彬,谢文达. 双模盾构机/TBM的原理与应用[J]. 隧道与地下工程灾害防治, 2022, 4(3): 47-66.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
[10] DING Xiuli, ZHANG Yuting, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 20 -35 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn