Prediction of sealed cabin pressure in the earth pressure excavation mode of dual-mode shield tunnelling mode in complex formations based on PSO-RF model
ZHANG Bin1, TONG Bin1, LIU Guoqiang1, ZHOU Zihao2*, WANG Shuying2
(1. Urban Rail Transit Engineering Co., Ltd. of China Railway First Group Co., Ltd., Wuxi 214105, Jiangsu, China;2. School of Civil Engineering, Central South University, Changsha 410075, Hunan, China)
Abstract: Relying on the Hongshengsha-Yufengwei Section Tunnel Project of the second phase of Guangzhou Metro Line 7, this paper used the particle swarm optimization random forest method(PSO-RF)to establish a sealed cabin pressure prediction model in the dual-mode shield soil pressure boring mode. Through the correlation analysis of shield boring parameters, the tunneling parameters that had a great influence on the pressure of the sealing chamber were screened out, including screw speed, screw torque, cutterhead speed, propulsion speed, penetration degree, cutterhead torque, and total thrust, and the screened tunneling parameters were used as the input parameters of the prediction model, and the pressure of the sealing chamber was used as the output parameter of the model to predict the pressure of the sealing chamber. The results showed that the random forest PSO-RF prediction model improved by particle swarm algorithm could effectively predict the pressure of the dual-mode shield sealed cabin, and compared with the traditional neural network prediction model, the PSO-RF model had higher prediction accuracy, the average absolute error was within 10%, and the predicted value and the actual goodness-of-fit R2 were 0.901 4, which was significantly superior to the BP neural network in terms of prediction accuracy and generalization ability of the model.
张斌, 佟彬, 刘国强, 周子豪, 王树英. 基于PSO-RF模型的复杂地层双模盾构土压掘进模式下密封舱压力预测[J]. 隧道与地下工程灾害防治, 2023, 5(1): 97-106.
ZHANG Bin, TONG Bin, LIU Guoqiang, ZHOU Zihao, WANG Shuying. Prediction of sealed cabin pressure in the earth pressure excavation mode of dual-mode shield tunnelling mode in complex formations based on PSO-RF model. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 97-106.
[1] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报, 2022, 35(4): 1-40. Editorial Department of China Journal of Highway and Transport. Review on China's traffic tunnel engineering research: 2022[J]. China Journal of Highway and Transport, 2022, 35(4): 1-40. [2] 王树英, 刘朋飞, 胡钦鑫, 等. 盾构隧道渣土改良理论与技术研究综述[J]. 中国公路学报, 2020, 33(5): 8-34. WANG Shuying, LIU Pengfei, HU Qinxin, et al. State-of-the-art on theories and technologies of soil conditioning for shield tunneling[J]. China Journal of Highway and Transport, 2020, 33(5): 8-34. [3] 叶蕾. 气垫式泥水/土压双模式盾构选型及快速换模研究[J]. 建筑机械化, 2021, 42(3): 34-40. YE Lei. Research on air cushion slurry/EPB TBM selection and rapid mode conversion method[J]. Construction Mechanization, 2021, 42(3): 34-40. [4] 陈凡, 黄钟晖, 何川, 等. 圆砾-泥岩复合地层土压/泥水双模盾构合理模式转换点选取[J]. 土木工程学报, 2021, 54(增刊1): 48-57. CHEN Fan, HUANG Zhonghui, HE Chuan, et al. Selection of reasonable mode conversion point for earth pressure/slurry dual-mode shield in round graval-mudstone composite strata[J]. China Civil Engineering Journal, 2021, 54(Suppl.1): 48-57. [5] 孙峻枫, 陈凡, 宋天田, 等.基于神经网络的双模盾构复合地层掘进参数预测模型[J/OL].铁道标准设计.[2022-09-24]. https://doi.org/10.13238/j.issn.1004-2954.202201210007 SUN Junfeng, CHEN Fan, SONG Tiantian, et al. Tunneling parameter prediction model of dual-mode shield in composite strata based on neural network[J/OL].Railway Standard Design.[2022-09-24]. https://doi.org/10.13238/j.issn.1004-2954.202201210007 [6] 潘秋景, 李晓宙, 黄杉, 等. 机器学习在盾构隧道智能施工中的应用: 综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.. PAN Qiujing, LI Xiaozhou, HUANG Shan, et al. Application of machine learning to intelligent shield tunnelling: review and prospects[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 10-30. [7] ZHANG W G, LI H R, WU C Z, et al. Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling[J]. Underground Space, 2021, 6(4): 353-363. [8] ZHANG Wengang, ZHANG Runhong, WU Chongzhi. State-of-the-art review of soft computing applications in underground excavations[J]. Geoscience Frontiers, 2020, 11(4): 1095-1106. [9] ROSTAMI Jamal. Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure[M]. Golden, CO, USA: Colorado School of Mines, 1997. [10] LISLERUD Arne. Hard rock tunnel boring: prognosis and costs[J]. Tunnelling and Underground Space Technology, 1988, 3(1):9-17. [11] BARTON N. TBM tunnelling in jointed and faulted rock[M]. Rotterdam, Holland: Balkema, 2000. [12] 侯少康, 刘耀儒, 张凯. 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报, 2020, 39(8): 1648-1657. HOU Shaokang, LIU Yaoru, ZHANG Kai. Prediction of TBM tunnelling parameters based on IPSO-BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1648-1657. [13] 张哲铭, 李晓瑜, 姬建.基于LS-SVM的TBM掘进参数预测模型[J]. 河海大学学报(自然科学版), 2021, 49(4): 373-379. ZHANG Zheming, LI Xiaoyu, JI Jian. TBM excavation parameter prediction model based on LS-SVM method[J]. Journal of Hohai University(Natural Sciences), 2021, 49(4): 373-379. [14] 邱道宏, 傅康, 薛翊国, 等.深埋隧道TBM掘进参数LSTM时序预测模型及应用研究[J]. 中南大学学报(自然科学版), 2021, 52(8): 2646-2660. QIU Daohong, FU Kang, XUE Yiguo, et al. LSTM time-series prediction model for TBM tunneling parameters of deep-buried tunnels and application research[J]. Journal of Central South University(Science and Technology), 2021, 52(8): 2646-2660. [15] 仉文岗, 唐理斌, 陈福勇, 等.基于4种超参数优化算法及随机森林模型预测TBM掘进速度[J]. 应用基础与工程科学学报, 2021, 29(5): 1186-1200. ZHANG Wengang, TANG Libin, CHEN Fuyong, et al. Prediction for TBM penetration rate using four hyperparameter optimization methods and random forest model[J]. Journal of Basic Science and Engineering, 2021, 29(5): 1186-1200. [16] 李建斌, 郑赢豪, 荆留杰, 等. 基于岩体聚类分级的TBM掘进参数预测方法[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3326-3337. LI Jianbin, ZHENG Yinghao, JING Liujie, et al. TBM tunneling parameters prediction method based on clustering classification of rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl.2): 3326-3337. [17] 周小雄, 龚秋明, 殷丽君, 等. 基于BLSTM-AM模型的TBM稳定段掘进参数预测[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3505-3515. ZHOU Xiaoxiong, GONG Qiuming, YIN Lijun, et al. Predicting boring parameters of TBM stable stage based on BLSTM networks combined with attention mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl.2): 3505-3515. [18] 张庆龙, 朱燕文, 马睿, 等. 基于注意力加强Bi-LSTM模型的TBM掘进参数预测研究[J]. 现代隧道技术, 2022, 59(4): 69-80. ZHANG Qinglong, ZHU Yanwen, MA Rui, et al. Study on prediction of TBM tunnelling parameters based on attentionenhanced Bi-LSTM model[J]. Modern Tunnelling Technology, 2022, 59(4): 69-80. [19] LI Jinhui, LI Pengxi, GUO Dong, et al Advanced prediction of tunnel boring machine performance based on big data[J]. Geoscience Frontiers, 2021, 12(1): 331-338. [20] SUN Wei, SHI Maolin, ZHANG Chao, et al.Dynamic load prediction of tunnel boring machine(TBM)based on heterogeneous in situ data[J]. Automation in Construction, 2018, 92: 23-34. [21] GAO Xianjie, SHI Maolin, SONG Xueguan, et al.Recurrent neural networks for real-time prediction of TBM operating parameters[J]. Automation in Construction, 2019, 98: 225-235. [22] 徐一帆, 王士民, 何川, 等. 基于BP神经网络的复合地层盾构掘进参数预测[J]. 铁道标准设计, 2022, 66(7): 120-125. XU Yifan, WANG Shimin, HE Chuan, et al. Prediction of driving parameters of shield tunnel in composite strata based on back propagation neural network[J]. Railway Standard Design, 2022, 66(7): 120-125. [23] 黄靓钰, 阳军生, 张聪, 等. 基于BP神经网络的水下岩溶地层盾构掘进参数预测与分析[J]. 土木工程学报, 2020, 53(增刊1): 75-80. HUANG Liangyu, YANG Junsheng, ZHANG Cong, et al. Prediction and analysis of shield tunneling parameters in underwater Karst stratum based on BP neural network[J]. China Civil Engineering Journal, 2020, 53(Suppl.1): 75-80. [24] 林春金, 杨晓达, 龚英杰, 等. 基于PSO-BP的土压盾构土仓压力预测模型及掘进参数敏感性分析[J]. 应用基础与工程科学学报, 2021, 29(5): 1220-1233. LIN Chunjin, YANG Xiaoda, GONG Yingjie, et al. Prediction model of in-chamber earth pressure for EPB shield based on PSO-BP and parameter sensitivity analysis of tunneling parameters[J]. Journal of Basic Science and Engineering, 2021, 29(5): 1220-1233. [25] 汪来, 王树英, 潘秋景, 等.基于AM-BiLSTM模型的块石回填土区盾构姿态预测研究[J/OL].铁道科学与工程学报.[2022-11-21]. https://doi.org/10.19713/j.cnki.43-1423/u.T20221565. WANG Lai, WANG Shuying, PAN Qiujing, et al. Research of prediction of shield attitude passing the soil-rock mixture backfill area based on the AM-BiLSTM[J/OL]. Journal of Railway Science and Engineering.[2022-11-21]. https://doi.org/10.19713/j.cnki.43-1423/u.T20221565. [26] 肖浩汉, 陈祖煜, 徐国鑫, 等.基于GRU算法的盾构掘进参数预测:以成都地铁为例[J/OL].长江科学院院报.[2022-04-15]. https://kns.cnki.net/kcms/detail/42.1171.TV.20220415.0825.002.html. XIAO Hao han, CHEN Zuye, XU Guoxin, et al. Prediction of shield tunneling parameters based on GRU algorithm: a case study on the Chengdu Metro[J/OL].Journal of Yangtze River Scientific Research Institute.[2022-04-15]. http://kns.cnki.net/kcms/detail/42.1171.TV.20220415.0825.002.html. [27] 李超, 李涛, 李正,等. 基于BP神经网络的复合地层盾构掘进参数预测与分析[J]. 土木工程学报, 2017, 50(增刊1): 145-150. LI Chao, LI Tao, LI Zheng, et al. Prediction and analysis of shield boring parameters in a mixed ground based on BP neural network[J]. China Civil Engineering Journal, 2017, 50(Suppl.1): 145-150. [28] 范文超,孙振川,李凤远,等.汕头海湾隧道复合地层超大直径泥水盾构掘进参数预测研究[J].隧道建设(中英文), 2020, 40(8): 1160-1168. FAN Wenchao, SUN Zhenchuan, LI Fengyuan, et al. Research on prediction of tunneling parameters of super-large diameter slurry shield in composite strata of Shantou Bay tunnel[J]. Tunnel Construction, 2020, 40(8): 1160-1168. [29] 罗维平,袁大军, 金大龙, 等.基于随机森林的复合地层盾构切口泥水压力预测与分析[J].土木工程学报, 2020, 53(增刊1): 43-49. LUO Weiping, YUAN Dajun, JIN Dalong, et al. Prediction and analysis of slurry pressure at the shield cut in composite strata based on random forest[J]. China Civil Engineering Journal, 2020, 53(Suppl.1): 43-49. [30] BREIMAN Leo. Random Forests[J]. Machine Learning, 2001, 45(1):5-32. [31] DING Yanming, ZHANG Wenlong, YU Lei, et al. The accuracy and efficiency of GA and PS0 optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis[J]. Energy, 2019, 176:582-588. [32] ZHANG Wengang, WU Chongzhi, ZHONG Haiyi, et al. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization[J]. Geoscience Frontiers, 2021, 12(1): 469-477. [33] 周中, 张俊杰, 丁昊晖, 等.基于PSO-BP神经网络的隧道绿色建造污水处理预测模型[J].铁道科学与工程学报, 2022, 19(5): 1450-1458. ZHOU Zhong, ZHANG Junjie, DING Haohui, et al. Prediction model of sewage treatment in tunnel green construction based on PSO-BP neural network[J]. Journal of Railway Science and Engineering, 2022, 19(5): 1450-1458.