Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (4): 1-8    DOI: 10.19952/j.cnki.2096-5052.2023.04.01
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于盾构渣土改良的流动化回填土的工程性能研究
曾长女1,王子正1,曹硕倩1,任磊2
1.河南工业大学土木工程学院, 河南 郑州 450001;2.郑州地铁集团有限公司, 河南 郑州 450003
Engineering performance of flowable backfill soil based on shield muck
ZENG Changnü1, WANG Zizheng1, CAO Shuoqian1, REN Lei2
1. School of Civil Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China;
2. Zhengzhou Rail Transit Co., Ltd., Zhengzhou 450003, Henan, China
下载:  PDF (4242KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用泡沫剂和活性氧化镁双掺对盾构渣土进行协同改良。通过流动性、泌水率及抗压强度系列试验得到不同泡沫剂和活性氧化镁掺量下的改良土流动度、泌水率以及抗压强度变化规律。结果表明:改良后的流动化回填土具备良好的流动性与固化强度;通过调节泡沫剂和活性氧化镁掺量,可得到流动度为180~320 mm、泌水率小于5%、28 d强度为0.6~1.2 MPa的流动化回填土,适用于更广泛的工程需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾长女
王子正
曹硕倩
任磊
关键词:  渣土资源化  泡沫剂  活性氧化镁  流动度  泌水率  抗压强度    
Abstract: This study aimed to enhance shield muck by incorporating foam agent and active magnesium oxide. The fluidity, bleeding rate and compressive strength of the improved soil under different foam agent and active magnesium oxide content were obtained by fluidity, bleeding rate and compressive strength test. It was showed that the improved flowable backfill soil exhibited excellent fluidity and solidified strength. By adjusting the content of foam agent and active magnesium oxide, the flowable backfill soil with fluidity ranging from 180 mm to 320 mm, bleeding rate below 5%, and 28-day compressive strength between 0.6 MPa and 1.2 MPa could be obtained.
Key words:  muck resource    foam agent    active magnesium oxide    fluidity    bleeding rate    compressive strength
收稿日期:  2023-07-30      修回日期:  2023-09-22      发布日期:  2023-12-19     
中图分类号:  X705  
基金资助: 河南省科技研发计划联合基金资助项目(222103810075);河南工业大学创新基金支持计划专项资助项目(2022ZKCJ07)
作者简介:  曾长女(1978— ),女,江西南丰人,教授,博士生导师,博士,主要研究方向为低碳材料与可持续能源岩土工程研究. E-mail:zengcnv@126.com
引用本文:    
曾长女, 王子正, 曹硕倩, 任磊. 基于盾构渣土改良的流动化回填土的工程性能研究[J]. 隧道与地下工程灾害防治, 2023, 5(4): 1-8.
ZENG Changnü, WANG Zizheng, CAO Shuoqian, REN Lei. Engineering performance of flowable backfill soil based on shield muck. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 1-8.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I4/1
[1] 谢亦朋,张聪,阳军生,等. 盾构隧道渣土资源化再利用技术研究及展望[J]. 隧道建设(中英文), 2022, 42(2):188-207. XIE Yipeng, ZHANG Cong,YANG Junsheng, et al. Research and prospect on technology for resource recycling of shield tunnel spoil[J]. Tunnel Construction, 2022, 42(2):188-207.
[2] 朱瑜星,卞怡,闵凡路,等. 地铁盾构渣土改良为流动化土进行应用试验研究[J]. 土木工程学报, 2020, 53(增刊1):245-251. ZHU Yuxing, BIAN Yi, MIN Fanlu, et al. Improvement of metro shield muck to controlled low-strength material[J]. China Civil Engineering Journal, 2020, 53(Suppl.1):245-251.
[3] 刘恒,薛德韩,吴凌壹,等. 深圳市盾构渣土现场处理现状及改进建议[J]. 深圳大学学报(理工版), 2022, 39(2):152-158. LIU Heng, XUE Dehan, WU Lingyi, et al. Status quo and improvement measures of shield waste onsite treatment in Shenzhen[J]. Journal of Shenzhen University(Science and Engineering), 2022, 39(2):152-158.
[4] 魏建军,张金喜,王建刚. 建筑垃圾细料生产流动化回填材料的性能[J]. 土木建筑与环境工程, 2016, 38(3):96-103. WEI Jianjun, ZHANG Jinxi, WANG Jiangang. Properties of flowable backfill materials using recycled fine aggregates of brick and concrete waste[J]. Journal of Civil and Environmental Engineering, 2016, 38(3):96-103.
[5] 王新岐,邵捷,问鹏辉,等. 绿色可控低强材料组成与工作性能研究进展[J]. 硅酸盐通报,2023, 42(7):2629-2644. WANG Xinqi, SHAO Jie, WEN Penghui, et al. Research progress on composition and working performance of green controlled low strength material[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7):2629-2644.
[6] 张箭,金俊杰,丰土根,等. 土压平衡盾构渣土浆液配比优化研究[J]. 岩土工程学报, 2023, 45(4):748-757. ZHANG Jian, JIN Junjie, FENG Tugen, et al. Optimization of mixture ratio of muck grout by earth pressure balance shield machine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4):748-757.
[7] 黄锐,刘国强,朱祐增,等. 基于城市顶管废土的可控低强度材料(CLSM)及性能影响因素研究[J]. 隧道建设(中英文), 2021, 41(增刊2):346-352. HUANG Rui, LIU Guoqiang, ZHU Youzeng, et al. Controlled low strength materials based on pipe jacking waste soil and their property influencing factors[J]. Tunnel Construction, 2021, 41(Suppl.2):346-352.
[8] WANG C H, LI Y D, WEN P H, et al. A comprehensive review on mechanical properties of green controlled low strength materials[J]. Construction and Building Materials, 2023, 363:129611.
[9] DO T M, KIM Y S. Engineering properties of controlled low strength material(CLSM)incorporating red mud[J]. International Journal of Geo-Engineering, 2016, 7(1):7.
[10] ALIZADEH V, HELWANY S, GHORBANPOOR A, et al. Rapid-construction technique for bridge abutments using controlled low-strength materials[J]. Journal of Performance of Constructed Facilities, 2014, 28(1):149-156.
[11] 郝彤,王帅,冷发光. 利用地铁盾构渣土制备高流态充填材料[J]. 硅酸盐通报, 2020, 39(5):1525-1532. HAO Tong, WANG Shuai, LENG Faguang. Preparation of high fluid filling materials by using subway shield muck[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5):1525-1532.
[12] GEMPERLINE C S, DURHAM S. Beneficial use of recycled materials in controlled low strength materials[C] //Proceedings of International Conference on Pipeline and Trenchless Technology(ICPTT 2012).[S.l.] : American Society of Civil Engineers, 2012: 1305-1316.
[13] 陈文平,谭存茂,杨和平. 气泡混合轻质土在台背回填施工中的应用[J]. 公路, 2012(11):162-166.
[14] 刘霆宇,王树英,钟嘉政. 土压平衡盾构改良渣土坍落度试验与理论研究综述[J]. 现代隧道技术, 2023, 60(2):1-13. LIU Tingyu, WANG Shuying, ZHONG Jiazheng. A review of experimental and theoretical studies on the slump of conditioned spoils of earth pressure balance shields[J]. Modern Tunnelling Technology, 2023, 60(2):1-13.
[15] 陆加越,白坤,张成君,等. 氧化镁矿粉复配加固砂土的强度特性[J/OL]. 土木与环境工程学报(中英文).(2023-04-04)[2023-07-25].https://kns.cnki.net/kcms/detail/50.1218.TU.20230404.0934.002.html. LU Jiayue, BAI Kun, ZHANG Chengjun, et al. Strength characteristics of sand treated by magnesium oxide activated granulated blast furnace[J/OL]. Journal of Civil and Environmental Engineering.(2023-04-04)[2023-07-25].https://kns.cnki.net/kcms/detail/50.1218.TU.20230404.0934.002.html.
[16] KIM Y S, DO T M, KIM H K, et al. Utilization of excavated soil in coal ash-based controlled low strength material(CLSM)[J]. Construction and Building Materials, 2016, 124:598-605.
[17] 中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
[18] 广东冠生土木工程技术有限公司,深圳市市政公司总公司. 气泡混合轻质土填筑工程技术规程: CJJ/T 177—2012[S]. 北京: 中国建筑工业出版社, 2012.
[19] 中国建筑西南设计研究院有限公司,四川三合利源环保建材有限公司. 预拌流态固化土工程应用技术标准: DBJ51/T 188—2022[S]. 成都: 西南交通大学出版社, 2022.
[20] 朱伟,赵笛,范惜辉,等. 渣土改良为流动化回填土的应用[J]. 河海大学学报(自然科学版), 2021, 49(2):134-139. ZHU Wei, ZHAO Di, FAN Xihui, et al. Research on application of residue soil-based flowable fill[J]. Journal of Hohai University(Natural Sciences), 2021, 49(2):134-139.
[21] 交通部公路科学研究所. 公路工程水泥及水泥混凝土试验规程: JTG E30—2005[S]. 北京: 人民交通出版社, 2005.
[22] 水利部水文仪器及岩土工程仪器质量监督检验测试中心,国电南京电力自动化股份有限公司,浙江土工仪器制造有限公司. 土工试验仪器 三轴仪第1部分: 应变控制式三轴仪: GB/T 24107.1—2009[S]. 北京: 中国标准出版社, 2009.
[23] 李喜全,曾长女,金南南. 粮食三轴试验数字图像测量系统改进与试验研究[J]. 中国农机化学报, 2020, 41(8):137-142. LI Xiquan, ZENG Changnü, JIN Nannan. Improvement and experimental research on digital image measurement system for grain triaxial test[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(8):137-142.
[24] CHEUNG T, JANSEN D C, ASCE A M. Engineering controlled low strength materials using scrap tire rubber[J].Geotechnical Special Publication, 2008(179):622-629.
[25] GABR M A, BOWDERS J J. Controlled low-strength material using fly ash and AMD sludge[J]. Journal of Hazardous Materials, 2000, 2(76):251-263.
[26] ETXEBERRIA M, AINCHIL J, PÉREZ M E, et al. Use of recycled fine aggregates for control low strength materials(CLSMs)production[J]. Construction and Building Materials, 2013, 44:142-148.
[27] 刘松玉,李晨. 氧化镁活性对碳化固化效果影响研究[J]. 岩土工程学报, 2015, 37(1):148-155. LIU Songyu, LI Chen. Influence of MgO activity on stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1):148-155.
[28] 刘松玉,曹菁菁,蔡光华. 活性氧化镁碳化固化粉质黏土微观机制[J]. 岩土力学, 2018, 39(5):1543-1552. LIU Songyu, CAO Jingjing, CAI Guanghua. Microstructural mechanism of reactive magnesia carbonated and stabilized silty clays[J]. Rock and Soil Mechanics, 2018, 39(5):1543-1552.
[1] 曾长女, 王子正, 曹硕倩, 任磊. 盾构渣土改良为流动化回填土的工程性能研究[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn