Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (4): 21-32    DOI: 10.19952/j.cnki.2096-5052.2023.04.03
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高地应力软岩隧道的变形规律
蔡遵乐1,梁庆国1*,曹生慧2,李启弟1,吴晓辉2,周仁3
1.兰州交通大学土木工程学院, 甘肃 兰州 730070;2.兰新铁路甘青有限公司, 甘肃 兰州 730030; 3.中铁二局集团有限公司, 四川 成都 610031
The deformation pattern of soft rock tunnels with high ground stress
CAI Zunle1, LIANG Qingguo1*, CAO Shenghui2, LI Qidi1, WU Xiaohui2, ZHOU Ren3
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
2. Lanzhou-Xinjiang Railway Gan-Qing Co., Ltd., Lanzhou 730030, Gansu, China;
3. China Railway No. 2 Engineering Group Co., Ltd., Chengdu 610031, Sichuan, China
下载:  PDF (6661KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究高地应力软岩隧道变形规律,基于41座隧道68个监测断面的实测数据统计,定量分析高地应力软岩隧道的变形量与岩体抗压强度、围岩完整性、隧道地应力、隧道埋深、侧压力系数、地下水、岩体基本质量指标和支护刚度等因素的关系。研究结果表明:高地应力软岩隧道围岩大变形是围岩地质条件、设计、施工参数及其它多种因素综合作用的结果,其中地应力、围岩特性和支护措施影响最大,案例统计结果可基本揭示我国交通隧道在高地应力软岩大变形控制技术发展水平。高地应力软岩隧道变形具有显著的时空效应,随时间呈现快速增长—持续增长—趋于稳定的变化规律。变形协调系数前期受开挖影响,变化浮动较大,但当仰拱施作后,变形协调系数很快达到稳定,验证和强调了封闭成环对变形控制的关键作用;随着大变形等级的提高,仰拱施工后变形占比减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡遵乐
梁庆国
曹生慧
李启弟
吴晓辉
周仁
关键词:  高地应力  软岩隧道  变形时空效应  大变形规律  统计分析    
Abstract: In order to study the deformation law of soft rock tunnels within high geo-stress, the paper quantitatively analyzed the relationships between the deformation value with the compressive strength of rock mass, the integrity of surrounding rock, the geo-stress & depth of tunnel, the coefficient of lateral stress, the ground water, the value of basic quality[BQ] and the stiffness of support of soft rock tunnel within high geo-stress based on the statistics of monitoring dada from 68 monitoring sections in 41 tunnels. The results indicated that the large deformation of surrounding rock in soft rock tunnel within high geo-stress was the outcome of the comprehensive action of geological conditions of surrounding rock, the design and construction parameters and other factors. Among them, the in-situ geo-stress, surrounding rock characteristics and supporting countermeasures had the significant influence. The results from the case statistics could preliminarily reveal the development level of the control technology of large deformation of soft rock traffic tunnel within high geo-stress in China. The deformation of soft rock tunnel within high geo-stress had noticeable time-space effect with the variation patterns from the rapid growth stage to the continuing growth stage and then the stabilizing stage at last with time. The deformation coordination coefficient was mostly affected by the excavation with large fluctuations in the early stage, but tended to be stable very soon after the inverted arch was constructed which also verified and emphasized the key role of the ring closure to the deformation control from another perspective. With the increase of large deformation grade, the proportion of the deformation after construction of inverted arch decreased.
Key words:  high geo-stress    soft rock tunnel    space-time effect of deformation    large deformation law of the surrounding rock    statistical analysis
收稿日期:  2023-08-26      修回日期:  2023-11-28      发布日期:  2023-12-19     
中图分类号:  U45  
基金资助: 国家自然科学基金资助项目(51968041);中国博士后科学基金资助项目(2021M693843);兰州交通大学“百名青年优秀人才培养计划”资助项目(2017150)
通讯作者:  梁庆国(1976— ),男,甘肃临洮人,教授,博士生导师,博士,主要研究方向为隧道与地下工程。    E-mail:  lqg_39@163.com
作者简介:  蔡遵乐(1999— ),男,山东莘县人,硕士研究生,主要研究方向为隧道与地下工程. E-mail:909001779@qq.com
引用本文:    
蔡遵乐, 梁庆国, 曹生慧, 李启弟, 吴晓辉, 周仁. 高地应力软岩隧道的变形规律[J]. 隧道与地下工程灾害防治, 2023, 5(4): 21-32.
CAI Zunle, LIANG Qingguo, CAO Shenghui, LI Qidi, WU Xiaohui, ZHOU Ren. The deformation pattern of soft rock tunnels with high ground stress. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 21-32.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I4/21
[1] 魏来,刘钦,黄沛.高地应力软岩隧道大变形机理及控制对策研究综述[J].公路,2017,62(7):297-306. WEI Lai, LIU Qing, HUANG Pei. Research progress on large deformation mechanism and control countermeasures of soft rock tunnel in high ground stress[J].Highway, 2017, 62(7):297-306.
[2] 张祉道.家竹箐隧道施工中支护大变形的整治[J].世界隧道,1997(1):7-16. ZHANG Zhidao. Treatment of large deformation of support in construction of Jiazhuqing Tunnel[J]. Shijie Suidao, 1997(1):7-16.
[3] 李国良,朱永全.乌鞘岭隧道高地应力软弱围岩大变形控制技术[J].铁道工程学报,2008,25(3):54-59. LI Guoliang, ZHU Yongquan. Control technology for large deformation of highland stressed weak rock in Wushaoling Tunnel[J]. Journal of Railway Engineering Society, 2008, 25(3): 54-59.
[4] 王永刚,丁文其,刘志强,等.木寨岭隧道大变形分级标准与支护时机研究[J].地下空间与工程学报,2020,16(4):1116-1122. WANG Yonggang, DING Wenqi, LIU Zhiqiang, et al. Classification standard of large deformation and construction time of second lining in Muzhailing Tunnel[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(4):1116-1122.
[5] 吴广明,刘志春,吴晓辉.兰渝铁路两水隧道软岩大变形控制技术[J].铁道标准设计,2013,57(12):82-86. WU Guangming, LIU Zhichun, WU Xiaohui. Control technology for large deformation of Liangshui Tunnel with soft rock on Lanzhou-Chongqing Railway[J].Railway Standard Design, 2013, 57(12):82-86.
[6] 李廷春.毛羽山隧道高地应力软岩大变形施工控制技术[J].现代隧道技术,2011,48(2):59-67. LI Tingchun. Large deformation control technology for Maoyushan Tunnel in soft rock under high in-situ stresses[J]. Modern Tunnelling Technology, 2011, 48(2):59-67.
[7] 闫红江,刘成禹,邓志刚,等. 丽香铁路中义隧道初期支护大变形的力学机制[J]. 水利与建筑工程学报, 2019, 17(5): 168-173. YAN Hongjiang, LIU Chengyu, DENG Zhigang, et al. Mechanical mechanism of initial support large deformation of Zhongyi Tunnel in Lixiang Railway[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(5):168-173.
[8] 周航,陈仕阔,刘彤,等.复杂山区深埋隧道软岩大变形机理研究:以杨家坪隧道为例[J].工程地质学报,2022,30(3):852-862. ZHOU Hang, CHEN Shikuo, LIU Tong, et al. Large deformation mechanism of soft rock surrounding tunnel deep buried in complex mountainous:a case study of Yangjiaping Tunnel[J]. Journal of Engineering Geology, 2022, 30(3):852-862.
[9] 侯国强.成兰铁路茂县隧道大变形特征及施工技术[J].隧道建设(中英文),2019,39(5):868-875. HOU Guoqiang. Large deformation characteristics and construction technology of Maoxian Tunnel on Chengdu-Lanzhou Railway[J]. Tunnel Construction, 2019, 39(5):868-875.
[10] HOEK E, MARINO P. Predicting squeeze[J]. Tunnels & Tunneling International, 2000, 12(32):33-36.
[11] AYDAN Ö, AKAGI T, KAWAMOTO T. The squeezing potential of rock around tunnels: theory and prediction with examples taken from Japan[J]. Rock Mechanics and Rock Engineering, 1996, 29(3):125-143.
[12] 国家铁路局. 铁路隧道设计规范: TB 10003—2016[S]. 北京: 中国铁道出版社, 2017.
[13] 陈子全,何川,吴迪,等.高地应力层状软岩隧道大变形预测分级研究[J].西南交通大学学报,2018,53(6):1237-1244. CHEN Ziquan, HE Chuan, WU Di, et al. Study of large deformation classification criterion for layered soft rock tunnels under high geostress[J].Journal of Southwest Jiaotong University, 2018, 53(6):1237-1244.
[14] 李国良,刘志春,朱永全.兰渝铁路高地应力软岩隧道挤压大变形规律及分级标准研究[J].现代隧道技术,2015, 52(1):62-68. LI Guoliang, LIU Zhichun, ZHU Yongquan. On the large squeezing deformation law and classification criteria for the Lanzhou-Chongqing Railway tunnels in soft and high geostress rocks[J]. Modern Tunnelling Technology, 2015, 52(1):62-68.
[15] 陈志敏,唐帅尧,李亚子,等.极高地应力软岩稳定性指标优先级及多因素耦合分级[J].防灾减灾工程学报,2023,43(1):78-87. CHEN Zhimin, TANG Shuaiyao, LI Yazi, et al. Stability index priority and multi-factor coupling classification method for extremely high in-situ stress soft rock[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(1):78-87.
[16] 袁青,陈世豪,肖靖,等.浅埋富水软岩隧道大变形机理与控制研究[J].防灾减灾工程学报,2022,42(4):723-731. YUAN Qing, CHEN Shihao, XIAO Jing, et al. Research on large deformation mechanism and countermeasures of shallow buried tunnel in soft rock with abundant water[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(4):723-731.
[17] 张沛远,张晓平,张晗,等.莲花隧道软弱围岩大变形预测方法适用性评价研究[J].工程地质学报,2022,30(5):1689-1702. ZHANG Peiyuan, ZHANG Xiaoping, ZHANG Han, et al. Applicability evaluation of prediction method for large deformation of soft surrounding rock in Lianhua Tunnel[J].Journal of Engineering Geology, 2022, 30(5):1689-1702.
[18] 孙德利.典型膨胀岩隧洞围岩变形机制分析[J].水利规划与设计,2018(3):97-99.
[19] 韩常领,夏才初,徐晨.软岩隧道挤压性大变形控制技术研究进展[J].地下空间与工程学报,2020,16(增刊1):492-505. HAN Changling, XIA Caichu, XU Chen. Research progress for the control measures of the tunnel large deformation in squeezing rocks[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(Suppl.1):492-505.
[20] SAARI K. Analysis of plastic deformation(squeezing)of layers intersecting tunnels and shafts in rock [D]. California,USA: University of California, Berkeley, 1982.
[21] TANIMOTO C. NATM-1(in Japanese)[M]. Tokyo, Janpan: Morikita Shuppan, 1984.
[22] 赵福善.兰渝铁路两水隧道高地应力软岩大变形控制技术[J].隧道建设,2014,34(6):546-553. ZHAO Fushan. Technologies to control serious deformation of soft rocks with high ground stress: case study on Liangshui Tunnel on Lanzhou-Chongqing Railway[J]. Tunnel Construction, 2014, 34(6):546-553.
[23] 陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982(1):1-20. TAN Tjongkie. The mechanical problems for the long-term stability of underground galleries[J]. Chinese Journal of Rock Mechanics and Engineering, 1982(1):1-20.
[24] 李术才,徐飞,李利平,等.隧道工程大变形研究现状、问题与对策及新型支护体系应用介绍[J].岩石力学与工程学报,2016,35(7):1366-1376. LI Shucai, XU Fei, LI Liping, et al. State of the art:challenge and methods on large deformation in tunnel engineering and introduction of a new type supporting system[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7):1366-1376.
[25] WU Kui, SHAO Zhushan, QIN Su. A solution for squeezing deformation control in tunnels using foamed concrete: a review[J]. Construction and Building Materials, 2020, 257:119539.
[26] WU Kui, SHAO Zhushan, QIN Su, et al. A critical review on the performance of yielding supports in squeezing tunnels[J]. Tunnelling and Underground Space Technology, 2021, 115:103815.
[27] 田四明.隧道支护体系有关问题探讨[R].西安:中国国家铁路集团鉴定中心,2019.
[28] 何满潮,李晨,宫伟力,等.NPR锚杆/索支护原理及大变形控制技术[J].岩石力学与工程学报,2016,35(8):1513-1529. HE Manchao, LI Chen, GONG Weili, et al. Support principles of NPR bolts/cables and control techniques of large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8):1513-1529.
[29] HE Manchao, SUI Qiru, TAO Zhigang. Excavation compensation theory and supplementary technology system for large deformation disasters[J]. Deep Underground Science and Engineering, 2023, 2(2):105-128.
[30] 汪波,郭新新,何川,等.当前我国高地应力隧道支护技术特点及发展趋势浅析[J].现代隧道技术,2018,55(5):1-10. WANG Bo, GUO Xinxin, HE Chuan, et al. Analysis on the characteristics and development trends of the support technology of high ground stress tunnels in China[J]. Modern Tunnelling Technology, 2018, 55(5):1-10.
[31] PANET M, SULEM J. Convergence-confinement method for tunnel design[M]. Cham, Germany: Springer, 2022.
[32] KAVVADAS M J. Monitoring ground deformation in tunnelling: current practice in transportation tunnels[J]. Engineering Geology, 2005, 79(1/2):93-113.
[33] XUE Yiguo, MA Xinmin, QIU Daohong, et al. Analysis of the factors influencing the nonuniform deformation and a deformation prediction model of soft rock tunnels by data mining[J].Tunnelling and Underground Space Technology, 2021, 109:103769.
[34] 王水善.堡镇隧道软岩高地应力地层大变形控制关键技术[J].隧道建设,2009,29(2):227-231. WANG Shuishan. Key technology to control serious deformations of soft rock stratum with high ground stress:case study on Baozhen Tunnel[J]. Tunnel Construction, 2009, 29(2):227-231.
[35] 朱学亮.乌鞘岭隧道F7断层大变形控制方案[J].山西建筑,2007(31):311-312. ZHU Xueliang. Control scheme of F7 large deformation fault in Wushaoling Tunnel[J].Shanxi Architecture, 2007(31):311-312.
[36] 曹小平,魏飞鹏,王波,等. 高地应力软岩隧道合理支护方案试验研究[J]. 铁道工程学报, 2018, 35(7):65-71. CAO Xiaoping, WEI Feipeng, WANG Bo, et al. Experimental research on the reasonable support scheme of soft rock tunnel with high ground stress[J]. Journal of Railway Engineering Society, 2018, 35(7):65-71.
[37] 戴永浩,陈卫忠,田洪铭,等.大梁隧道软岩大变形及其支护方案研究[J].岩石力学与工程学报,2015,34(增刊2):4149-4156. DAI Yonghao, CHEN Weizhong,TIAN Hongming,et al.Study of large deformation and support measures of Daliang Tunnel with soft rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl.2):4149-4156.
[38] 李新亮.峡口隧道高地应力软岩段变形施工技术研究[J].山西建筑,2014,40(17):170-172. LI Xinliang. Study on deformation construction technology of high stress soft rock section for Xiakou Tunnel[J]. Shanxi Architecture, 2014, 40(17):170-172.
[39] 龚军,唐帅尧,张丹峰,等.极高地应力软岩膨胀岩互层隧道大变形施工技术[J].隧道建设(中英文),2021,41(增刊2):485-493. GONG Jun, TANG Shuaiyao, ZHANG Danfeng, et al. Construction technology for large deformation tunnel in soft rock and swelling rock interbedded strata with extremely-high in-situ stress[J]. Tunnel Construction, 2021, 41(Suppl.2):485-493.
[40] 韩常领,张天,徐晨,等.大断面软岩隧道变形特征及多层初支控制研究[J].公路,2021,66(1):335-339. HAN Changling, ZHANG Tian, XU Chen, et al. Research on the deformation characteristics of soft rock tunnel with large section and the deformation control with multi-layer support[J]. Highway, 2021, 66(1):335-339.
[41] 陈桂虎,韩爱果,陈锦涛.成兰铁路云屯堡隧道软岩大变形特征及地质成因分析[J].铁道建筑,2017,57(10):56-59. CHEN Guihu, HAN Aiguo, CHEN Jintao. Large deformation features and geological origin analysis for soft rock of Yuntunbao Tunnel in Chengdu-Lanzhou Railway[J]. Railway Engineering, 2017, 57(10):56-59.
[42] 李沿宗,赵爽.某高地应力软岩隧道施工方案及多层支护结构变形分析[J].现代隧道技术,2019,56(3):161-165. LI Yanzong, ZHAO Shuang. Analysis on construction schemes and deformation of multi-layer support structure for a soft rock tunnel under high geostress[J]. Modern Tunnelling Technology, 2019, 56(3):161-165.
[43] 于天赐.软岩隧道大变形控制技术研究[J].土木工程学报,2017,50(增刊2):112-117. YU Tianci. Study on large deformation control technology of tunnel in soft rock[J]. China Civil Engineering Journal, 2017, 50(Suppl.2):112-117.
[44] 雷万雄,李取纲.高地应力软岩隧道开挖方案优化研究[J].土工基础,2017,31(3):344-349. LEI Wanxiong, LI Qugang. Optimization methods for the tunnel excavations in soft rock with high geo-stress[J] Soil Engineering and Foundation, 2017, 31(3):344-349.
[45] 邹翀,尤显明,焦雷,等.高地应力软岩隧道圆形断面扩挖施工围岩及支护受力特征研究[J].隧道建设,2017,37(1):30-36. ZOU Chong, YOU Xianming, JIAO Lei, et al. Study of mechanical characteristics of surrounding rock and supporting structure of enlarging construction of circular soft rock tunnel with high ground stress[J]. Tunnel Construction, 2017, 37(1):30-36.
[46] 张天宇.高地应力软岩隧道大变形控制及支护对策研究[J].湖南城市学院学报(自然科学版),2015,24(2):14-20. ZHANG Tianyu. Study of the control of large deformation and countermeasures of supporting of the high geo-stress soft rock tunnel[J]. Journal of Hunan City University(Natural Science), 2015, 24(2):14-20.
[47] 陈明福.高应力软岩单线铁路隧道大变形控制技术研究[J].公路,2021,66(11):369-374.
[48] 代聪,何川,刘川昆,等.开挖工法对高地应力场软岩隧道围岩稳定性影响的模型试验研究[J].现代隧道技术,2020,57(4):141-149. DAI Cong, HE Chuan, LIU Chuankun, et al. Model test study on influence of excavation methods on stability of surrounding rocks of the soft rock tunnel in high geostress field[J]. Modern Tunnelling Technology, 2020, 57(4):141-149.
[49] 全民,唐灵,赵亢.极高地应力千枚岩隧道施工围岩的变形与控制[J].四川建筑,2014,34(6):210-212. QUAN Min, TANG Ling, ZHAO Kang. Deformation and control of surrounding rock in high geostress phyllite tunnel construction[J].Sichuan Architecture, 2014, 34(6):210-212.
[50] 陈涛.某隧道软岩大变形防治问题的探讨[J].石家庄铁道学院学报(自然科学版),2008(1):39-42. CHEN Tao. Discussion on preventing and controlling measure for large deformation of soft-rock tunnel[J].Journal of Shijiazhuang Railway Institute(Natural Science), 2008(1):39-42.
[51] 李峰.高地应力构造破碎带隧道大变形灾变机制及控制技术研究[J].铁道科学与工程学报,2021,18(5):1222-1230. LI Feng. Study on the formation mechanism and large deformation control of tunnel in structural fracture zone with high in-situ stress[J]. Journal of Railway Science and Engineering, 2021, 18(5):1222-1230.
[52] 徐松.牡绥铁路兴源隧道软岩大变形控制技术[J].隧道建设,2016,36(8):997-1003. XU Song. Large deformation control technologies for soft rock of Xingyuan Tunnel on Mudanjiang-Suifenhe Railway[J]. Tunnel Construction, 2016, 36(8):997-1003.
[53] 龚海军,赵耿鹏,严健,等.川藏公路矮拉山隧道大变形特征及其影响因素分析[J].隧道建设(中英文),2021,41(增刊2):129-136. GONG Haijun, ZHAO Gengpeng, YAN Jian, et al. Characteristics and influencing factors of large deformation of Ailashan Tunnel of Sichuan-Xizang Highway[J]. Tunnel Construction, 2021, 41(Suppl.2):129-136.
[54] 申海晓.高速铁路软弱围岩隧道挤压变形控制技术[J].兰州工业学院学报,2022,29(1):29-35. SHEN Haixiao. Study on the control technology of extruding deformation of high speed railway tunnel with weak surrounding rock[J]. Journal of Lanzhou Institute Technology, 2022, 29(1):29-35.
[55] 来弘鹏,杨万精,谢永利.软岩大变形偏压公路隧道变形与荷载作用特征[J].中南大学学报(自然科学版),2014,45(6):1924-1931. LAI Hongpeng, YANG Wanjing, XIE Yongli. Analysis on deformation and load action features of large-deformation bias highway tunnel in soft rock[J]. Journal of Central South University(Science and Technology), 2014, 45(6):1924-1931.
[56] 周泽林,陈寿根,李岩松,等.高地应力环境下引水隧洞软弱围岩稳定性分析[J].水利水电技术,2014,45(2):87-92. ZHOU Zelin, CHEN Shougen, LI Yansong, et al. Stability analysis on soft and weak surrounding rock of diversion tunnel in high geostress zone[J]. Water Resources and Hydropower Engineering, 2014, 45(2):87-92.
[57] 邱俊,田学军,陈涛.西南某铁路软岩隧道大变形特征及其形成机制[J].中国水运,2018,18(7):203-205. QIU Jun, TIAN Xuejun, CHEN Tao. Large deformation characteristics and formation mechanism of a soft rock railway tunnel in southwest China[J]. China Water Transport, 2018, 18(7):203-205.
[58] 王一鸣,任登富,王立川,等.三联隧道穿越煤系地层软岩大变形控制研究[J].地下空间与工程学报,2013,9(增刊1):1613-1619. WANG Yiming, REN Dengfu, WANG Lichuan, et al. Control of large deformation for soft rock of Sanlian Tunnel through coal-bearing strata[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(Suppl.1):1613-1619.
[59] 汪耀,汤印,陈子全.鹧鸪山高地应力软岩隧道大变形预测与施工技术研究[J].路基工程,2017(6):142-145. WANG Yao, TANG Yin, CHEN Ziquan,et al. Research on large deformation prediction and construction technology of Zhegushan Tunnel with high ground stresses and soft rock[J]. Subgrade Engineering, 2017(6):142-145.
[60] 陈绍华.青藏铁路西格二线关角隧道关键技术[J].隧道建设,2016,36(3):355-372. CHEN Shaohua. Key construction technologies for Guanjiao Tunnel on Xining-Golmud 2nd line of Qinghai-Xizang Railway[J]. Tunnel Construction, 2016, 36(3):355-372.
[61] 谢金池,寇昊,何川,等.高地应力软岩大变形隧道洞型及双层初期支护支护时机研究[J].隧道建设(中英文),2022,42(9):1578-1588. XIE Jinchi, KOU Hao, HE Chuan, et al. Hole type and supporting time of double-layer primary support for large deformation soft rock tunnel with high insitu-stress[J]. Tunnel Construction, 2022, 42(9):1578-1588.
[62] 陈卫忠,田云,王学海,等.基于修正[BQ] 值的软岩隧道挤压变形预测[J].岩土力学,2019,40(8):3125-3134. CHEN Weizhong, TIAN Yun, WANG Xuehai, et al. Squeezing prediction of tunnel in soft rocks based on modified [BQ] [J]. Rock and Soil Mechanics, 2019, 40(8):3125-3134.
[63] 涂孝波.隧道围岩与支护结构相互作用机理及其应用研究[D].南昌:东华理工大学,2019. TU Xiaobo.Study on interaction mechanism and application of tunnel surrounding rock and supporting structure[D]. Nanchang: East China University of Technology, 2019.
[64] 陶志刚,罗森林,李梦楠,等.层状板岩隧道大变形控制参数优化数值模拟分析及现场试验[J].岩石力学与工程学报,2020,39(3):491-506. TAO Zhigang, LUO Senlin, LI Mengnan, et al. Optimization of large deformation control parameters of layered slate tunnels based on numerical simulation and field[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3):491-506.
[65] 刘晓杰,梁庆国,刘传新,等.富水深埋黄土隧道变形规律及控制措施[J].隧道与地下工程灾害防治,2021,3(2):23-32. LIU Xiaojie, LIANG Qingguo, LIU Chuanxin, et al. Deformation laws and control measures of deep-buried loess tunnel with abundant water[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2):23-32.
[1] 杨文波, 王宗学, 田浩晟, 吴枋胤, 杨自成. 基于PSO-SVM算法的层状软岩隧道大变形预测方法[J]. 隧道与地下工程灾害防治, 2022, 4(1): 29-37.
[2] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[3] 王福善. 木寨岭隧道极高地应力软岩大变形控制技术[J]. 隧道与地下工程灾害防治, 2020, 2(4): 65-73.
[4] 柳献,孙齐昊. 盾构隧道衬砌结构连续性破坏事故案例分析[J]. 隧道与地下工程灾害防治, 2020, 2(2): 21-30.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn