Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (1): 84-93    DOI: 10.19952/j.cnki.2096-5052.2024.01.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
深层地热能开采与储能系统模拟研究
王佳铖1,赵志宏1,陈进帆1,贺洁1,周露明1,谭现锋2*
1.清华大学土木工程系, 北京 100084;2.山东省鲁南地质工程勘察院, 山东 济宁 272100
Research on deep geothermal energy exploitation and storage system
WANG Jiacheng1, ZHAO Zhihong1, CHEN Jinfan1, HE Jie1, ZHOU Luming1, TAN Xianfeng2*
1. School of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. Shandong Provincial Lunan Geology and Exploration Institute, Jining 272100, Shandong, China
下载:  PDF (13769KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究深层地热能常规开采与储能相结合的系统在可持续开采条件下的性能,共定义7个评价指标,其中热突破时间、水位降深和地表沉降用于评价深层地热能的可持续开采,可采地热能、储存能量、能量增益系数和能量回收率用于评价系统的储能运行效果。利用井-储系统多场耦合数值模拟方法,基于鄄城地热田的两采一灌地热井系统,解释季节性地热开采和储能情况下的深层热储热-水-力多场耦合过程,验证所提出的评价指标的合理性与适用性。结果表明:在常规地热开采的基础上增加夏季地热储能后,冬季可采地热能增加约360%,该系统可满足热突破时间、水位降深和地表沉降这3个可持续开采评价指标的要求。建议在未来的地热开发过程中加入储能,促进更大规模和更高质量地开发利用深层地热能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王佳铖
赵志宏
陈进帆
贺洁
周露明
谭现锋
关键词:  地热储能  评价体系  可持续开采  多场耦合    
Abstract: To study the performance of system combining common development and energy storage of deep geothermal energy under sustainable development conditions, seven evaluation criteria were defined. Thermal breakthrough time, water level and vertical displacement were used to assess the sustainable development of deep geothermal energy, and total recoverable energy, stored energy, energy gain coefficient and energy recovery efficiency were used to assess the operating performance of proposed system. Based on the well system which consists of two production wells and one injection well in Juancheng geothermal field, the coupled thermo-hydro-mechanical processes subject to seasonal exploitation and storage were demonstrated and the rationality and applicability of proposed evaluation criteria were validated, using the integrated geothermal reservoir model. The results showed that recoverable heat energy could increase about 360% by adding artificial thermal storage into common geothermal reservoir development, and the proposed system could meet the sustainable development demands of thermal breakthrough time, water level and vertical displacement. It is strongly recommended to add energy storage into the future geothermal reservoir development system, which promotes the development and utilization of urban deep geothermal energy on a larger scale and with higher quality.
Key words:  geothermal energy storage    evaluation system    sustainable development    coupled multi-field effectReceived: 2024-01-31    Revised: 2024-03-08    Accepted: 2024-03-10    Published: 2024-03-20
发布日期:  2024-04-10     
中图分类号:  P314  
基金资助: 国家重点研发计划课题资助项目(2021YFB1507302)
作者简介:  王佳铖(1999— ),男,浙江杭州人,博士研究生,主要研究方向为地热能开发与利用. E-mail: wang-jc21@mails.tsinghua.edu.cn. *通信作者简介:谭现锋(1977— ),男,山东鱼台人,研究员,博士,主要研究方向为深部地热资源勘探与开发、采煤沉陷区综合治理与生态修复. E-mail: geotan1977@126.com
引用本文:    
王佳铖, 赵志宏, 陈进帆, 贺洁, 周露明, 谭现锋. 深层地热能开采与储能系统模拟研究[J]. 隧道与地下工程灾害防治, 2024, 6(1): 84-93.
WANG Jiacheng, ZHAO Zhihong, CHEN Jinfan, HE Jie, ZHOU Luming, TAN Xianfeng. Research on deep geothermal energy exploitation and storage system. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(1): 84-93.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I1/84
[1] 汪集暘, 庞忠和, 程远志, 等. 全球地热能的开发利用现状与展望[J]. 科技导报, 2023, 41(12): 5-11. WANG Jiyang, PANG Zhonghe, CHENG Yuanzhi, et al. Current state, utilization and prospective of global geothermal energy[J]. Science & Technology Review, 2023, 41(12): 5-11.
[2] WESSELINK M, LIU W, KOORNNEEF J, et al. Conceptual market potential framework of high temperature aquifer thermal energy storage: a case study in the Netherlands[J]. Energy, 2018, 147: 477-489.
[3] MAHON H, O'CONNOR D, FRIEDRICH D, et al. A review of thermal energy storage technologies for seasonal loops[J]. Energy, 2022, 239: 122207.
[4] SHELDON H A, WILKINS A, GREEN C P. Recovery efficiency in high-temperature aquifer thermal energy storage systems[J]. Geothermics, 2021, 96: 102173.
[5] FLEUCHAUS P, SCHÜPPLER S, BLOEMENDAL M, et al. Risk analysis of high-temperature aquifer thermal energy storage(HT-ATES)[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110153.
[6] FLEUCHAUS P, GODSCHALK B, STOBER I, et al. Worldwide application of aquifer thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 861-876.
[7] SCHOUT G, DRIJVER B, GUTIERREZ-NERI M, et al. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method[J]. Hydrogeology Journal, 2014, 22(1): 281-291.
[8] ZEGHICI R M, OUDE ESSINK G H P, HARTOG N, et al. Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage(HT-ATES)system in a geothermal reservoir[J]. Geothermics, 2015, 55: 58-68.
[9] HELDT S, WANG Bo, HU Linwei, et al. Numerical investigation of a high temperature heat injection test[J]. Journal of Hydrology, 2021, 597: 126229.
[10] RICKS W, NORBECK J, JENKINS J. The value of in-reservoir energy storage for flexible dispatch of geothermal power[J]. Applied Energy, 2022, 313: 118807.
[11] PANJA P, MCLENNAN J, GREEN S. Influence of permeability anisotropy and layering on geothermal battery energy storage[J]. Geothermics, 2021, 90: 101998.
[12] HUANG Yonghui, PANG Zhonghe, KONG Yanlong, et al. Assessment of the high-temperature aquifer thermal energy storage(HT-ATES)potential in naturally fractured geothermal reservoirs with a stochastic discrete fracture network model[J]. Journal of Hydrology, 2021, 603: 127188.
[13] LIU Guihong, ZHAO Zhihong, XU Haoran, et al. A robust assessment method of recoverable geothermal energy considering optimal development parameters[J]. Renewable Energy, 2022, 201: 426-440.
[14] AL-KHOURY R, BONNIER P G, BRINKGREVE R B J. Efficient finite element formulation for geothermal heating systems: part I: steady state[J]. International Journal for Numerical Methods in Engineering, 2005, 63(7): 988-1013.
[15] PARISIO F, VILARRASA V, WANG Wenqing, et al. The risks of long-term re-injection in supercritical geothermal systems[J]. Nature Communications, 2019, 10: 4391.
[16] WANG Hongwei, LIU Hejuan, CHEN Dongfang, et al. Thermal response of the fractured hot dry rocks with thermal-hydro-mechanical coupling effects[J]. Geothermics, 2022, 104: 102464.
[17] WANG Jiacheng, TAN Xianfeng, ZHAO Zhihong, et al. Coupled thermo-hydro-mechanical modeling on geothermal doublet subject to seasonal exploitation and storage[J]. Energy, 2024, 293: 130650.
[18] 赵志宏, 刘桂宏, 王佳铖, 等. 城市深层地热能可持续开采多场耦合效应数值模拟研究进展[J]. 煤炭学报, 2023, 48(3): 1126-1138. ZHAO Zhihong, LIU Guihong, WANG Jiacheng, et al. Coupled multi-field effect on sustainable development of deep geothermal energy in cities[J]. Journal of China Coal Society, 2023, 48(3): 1126-1138.
[19] 能源行业地热能专业标准化技术委员会. 中国地热供暖推荐做法[M]. 北京: 中国石化出版社, 2023.
[20] 赵志宏, 刘桂宏, 徐浩然. 深地能源工程热水力多场耦合效应高效模拟方法[J]. 工程力学, 2020, 37(6): 1-18. ZHAO Zhihong, LIU Guihong, XU Haoran. A robust numerical modeling framework for coupled thermo-hydro-mechanical process in deep geo-energy engineering[J]. Engineering Mechanics, 2020, 37(6): 1-18.
[21] MA Feng, LIU Guihong, ZHAO Zhihong, et al. Coupled thermo-hydro-mechanical modeling on the Rongcheng geothermal field, China[J]. Rock Mechanics and Rock Engineering, 2022, 55(8): 5209-5233.
[22] PANDEY S N, CHAUDHURI A, KELKAR S. A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir[J]. Geothermics, 2017, 65: 17-31.
[1] 王佳铖, 赵志宏, 陈进帆, 贺洁, 周露明, 谭现锋. 深层地热能开采与储能系统模拟研究[J]. 隧道与地下工程灾害防治, 0, (): 1-13.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn