Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (2): 1-12    DOI: 10.19952/j.cnki.2096-5052.2024.02.01
  前沿综述 本期目录 | 过刊浏览 | 高级检索 |
地铁区间隧道火灾热环境演化与疏散安全研究综述
李炎锋,苏枳赫
北京工业大学绿色建筑环境与节能技术北京市重点实验室, 北京 100124
A review on thermal environment evolution and evacuation safety fire of metro tunnel
LI Yanfeng, SU Zhihe
Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
下载:  PDF (7281KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 分析地铁区间停驶列车火灾烟气扩散及控制要求的特殊性,归纳地铁区间火灾研究的关键科学问题。总结国内外学者在地铁列车火灾燃烧及羽流行为特性,区间隧道顶棚下方烟气温度分布特性,区间烟气控制特性以及区间人员疏散特性问题的研究进展情况及成果。研究指出,传统地铁区间防排烟系统与人工智能及物联网等新技术结合来提高区间火灾防控能力是未来的重要研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李炎锋
苏枳赫
关键词:  区间地铁隧道  火灾  烟气控制  疏散  燃烧    
Abstract: This study analyzed the unique aspects of smoke movement and control requirements in metro tunnel fires, and summarized the key scientific issues in the research of metro tunnel fires. This study reviewed the research progress and achievements of domestic and foreign scholars in various aspects including metro train fire combustion and plume behavior, smoke temperature distribution characteristics under the tunnel ceiling, smoke control characteristics, and characteristics of personnel evacuation. It highlighted the importance of integrating traditional subway section smoke control systems with new technologies such as artificial intelligence and the internet of things to enhance section fire prevention and control capabilities, which is deemed a crucial direction for future research.
Key words:  metro section tunnel    fire    smoke control    evacuation    combustionReceived:2024-03-18    Revised:2024-04-06    Accepted:2024-04-16    Published:2024-06-20
发布日期:  2024-06-28     
中图分类号:  U25  
基金资助: 北京市自然科学基金资助项目(8172006)
作者简介:  李炎锋(1971— ),男,河南新密人,教授,博士生导师,博士,主要研究方向为城市地下空间火灾安全技术. E-mail: Liyanfeng@bjut.edu.cn
引用本文:    
李炎锋,苏枳赫. 地铁区间隧道火灾热环境演化与疏散安全研究综述[J]. 隧道与地下工程灾害防治, 2024, 6(2): 1-12.
LI Yanfeng, SU Zhihe. A review on thermal environment evolution and evacuation safety fire of metro tunnel. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 1-12.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I2/1
[1] LI Y Z, INGASON H. Overview of research on fire safety in underground road and railway tunnels[J]. Tunnelling and Underground Space Technology, 2018, 81: 568-589.
[2] ZHANG J D, JI W H, YUAN Z Y, et al. Pyrolysis, combustion, and fire spread characteristics of the railway train carriages: a review of development[J]. Energy and Built Environment, 2023, 4(6): 743-759.
[3] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.地铁设计规范:GB 50157—2013[S]. 北京:中国建筑工业出版社, 2014.
[4] 中华人民共和国住房和城乡建设部,国家市场监督管理总局.地铁设计防火标准:GB 51298—2018[S]. 北京:中国计划出版社, 2019.
[5] 国家市场监督管理总局,中国国家标准化管理委员会.地铁安全疏散规范:GB/T 33668—2017[S]. 北京:中国标准出版社,2017.
[6] National Fire Protection Association. Standard for fixed guideway transit and passenger rail systems: NFPA 130—2023[S]. Massachusetts, USA: NFPA, 2023.
[7] ALLENDER P J. Combustible material in passenger trains[J]. Fire Safety Journal, 1984, 8(1): 29-37.
[8] 李智国,厉志强,刘伟明. 高速列车火灾热释放速率计算方法研究[J]. 铁道机车车辆, 2018, 38(1): 15-18. LI Zhiguo, LI Zhiqiang, LIU Weiming. Study on the calculation methods of high-speed train heat release rate[J]. Railway Locomotive & Car, 2018, 38(1): 15-18.
[9] STAHLANWENDUNG S. Fires in transport tunnels: report on full-scale tests[R].[S.l.] :Studiensgesellschaft Stahlanwendung, 1995.
[10] INGASON H, KUMM M, NILSSON D, et al. The METRO project: final report 2010[R].[S.l.] :School of Sustainable Development of Society & Technology, 2012.
[11] HADJISOPHOCLEOUS G, LEE D, PARK W. Full-scale experiments for heat release rate measurements of railcar fires[C] //Proceedings of the 5th International Symposium on Tunnel Safety and Security. New York, USA:[s.n.] , 2012:14-16.
[12] LI Y Z, INGASON H, LONNERMARK A. Fire development in different scales of train carriages[J]. Fire Safety Science, 2014, 11: 302-315.
[13] 中华人民共和国住房和城乡建设部.城市轨道交通车辆防火要求:CJ/T 416—2012[S].北京:中国标准出版社,2013.
[14] SHI C L, ZHONG M H, CHEN C K, et al. Metro train carriage combustion behaviors-full-scale experiment study[J]. Tunnelling and Underground Space Technology, 2020, 104: 103544.
[15] PERRICONE J, WANG M, QUINTIERE J. Scale modeling of the transient thermal response of insulated structural frames exposed to fire[J]. Fire Technology, 2008, 44(2): 113-136.
[16] WHITE N. Fire development in passenger trains [D]. Melbourne, Australia: Centre for Environment Safety and Risk Engineering Victoria University, 2010.
[17] PENG M, SHI L, HE K, et al. Experimental study on fire plume characteristics in a subway carriage with doors[J]. Fire Technology, 2020, 56(2): 401-423.
[18] LI Y Z, INGASON H, LÖNNERMARK A. Correlations between different scales of metro carriage fire tests [R]. Borås, Sweden: SP Technical Research Institute of Sweden, 2013.
[19] 侯龙飞, 刘吉平, 刘晓波. 不同着火点对列车火灾影响研究[C] //2014年全国阻燃学术年会会议论文集. 襄阳:中国阻燃学会, 2014: 182-189.
[20] 王升. 高速列车车厢内火灾燃烧特性研究[D]. 成都: 西南交通大学, 2017. WANG Sheng. The resarch of fire combustion characteristics in high-speed train[D]. Chengdu: Southwest Jiaotong University, 2017.
[21] 彭敏. 侧向多开口地铁列车车厢火灾燃烧特性研究[D]. 合肥: 中国科学技术大学, 2021. PENG Min. Study on combustion characteristics of fires inside subway train with multiple lateral openings[D]. Hefei: University of Science and Technology of China, 2021.
[22] SHI Z C, SHI L, CONG W, et al. Temperature characteristics in a double long-narrow space with different fire locations[J]. Tunnelling and Underground Space Technology, 2022, 119: 104244.
[23] REN F, SHI C L, LI J, et al. Numerical study on the flow characteristics and smoke temperature evolution under double fires condition with a metro train in tunnel[J]. Tunnelling and Underground Space Technology, 2021, 114: 103943.
[24] 杨冠. 高温作用前后地铁隧道周围黏土的静动力特性研究[D]. 徐州: 中国矿业大学, 2023. YANG Guan. Static and dynamic characteristics of clay around subway tunnel before and after high temperature action[D]. Xuzhou: China University of Mining and Technology, 2023.
[25] 毛军, 郗艳红, 樊洪明. 地铁隧道列车火灾的火焰顶棚射流温度特性研究[J]. 土木工程学报, 2010, 43(2): 119-126. MAO Jun, XI Yanhong, FAN Hongming. Analysis of the characteristics of the flame ceiling jet temperature due to train fire in subway tunnels[J]. China Civil Engineering Journal, 2010, 43(2): 119-126.
[26] ZHANG Z Q, TAN Y J, HONG R L, et al. Experimental investigation of tunnel temperature field and smoke spread under the influence of a slow moving train with a fire in the carriage[J]. Tunnelling and Underground Space Technology, 2023, 131: 104844.
[27] ZHANG N, LU Z J, ZHOU D. Influence of train speed and blockage ratio on the smoke characteristics in a subway tunnel[J]. Tunnelling and Underground Space Technology, 2018, 74: 33-40.
[28] 朱春光. 狭长受限空间运动地铁列车火灾特性研究[D]. 天津: 天津大学, 2017. ZHU Chunguang. Characteristics of moving fire in long and confined subway tunnels[D]. Tianjin: Tianjin University, 2017.
[29] 曹向辉. 地铁火灾人员疏散影响因素分析及疏散策略[J]. 中国人民警察大学学报, 2023, 39(8): 48-51. CAO Xianghui. Analysis of influencing factors and evacuation strategies for subway fire personnel evacuation[J]. Journal of China People's Police University, 2023, 39(8): 48-51.
[30] CONG W, SHI L, SHI Z C, et al. Effect of train fire location on maximum smoke temperature beneath the subway tunnel ceiling[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2020, 97: 103282.
[31] 梁强, 李炎锋, 李俊梅. 狭长通道内火灾烟气流动特性实验研究[J]. 消防科学与技术, 2016, 35(9): 1221-1224. LIANG Qiang, LI Yanfeng, LI Junmei. Experimental research on transportation of fire-induced smoke in narrow corridor[J]. Fire Science and Technology, 2016, 35(9): 1221-1224.
[32] 张靖岩, 王婉娣, 彭伟,等. 纵向风速对隧道内烟气发展影响的实验研究[J]. 中国安全生产科学技术, 2010, 6(1): 17-20. ZHANG Jingyan, WANG Wandi, PENG Wei, et al. Experimental study on the effect of longitudinal ventilation on smoke development in tunnels[J]. Journal of Safety Science and Technology, 2010, 6(1): 17-20.
[33] WU Y, BAKAR M Z A. Control of smoke flow in tunnel fires using longitudinal ventilation systems:a study of the critical velocity[J]. Fire Safety Journal, 2000, 35(4): 363-390.
[34] THOMAS P. The movement of buoyant fluid against a stream and the venting of underground fires[R]. Boreham Wood,Britain: Fire Research Station, 1958.
[35] ZHANG S G, YAO Y Z, ZHU K, et al. Prediction of smoke back-layering length under different longitudinal ventilations in the subway tunnel with metro train[J]. Tunnelling and Underground Space Technology, 2016, 53: 13-21.
[36] ZHU K, SHI L, YAO Y Z, et al. Smoke movement in a sloping subway tunnel under longitudinal ventilation with blockage[J]. Fire Technology, 2017, 53(6): 1985-2006.
[37] WENG M C, LU X L, LIU F, et al. Prediction of backlayering length and critical velocity in metro tunnel fires[J]. Tunnelling and Underground Space Technology, 2015, 47: 64-72.
[38] LIU F, YU L X, WENG M C, et al. Study on longitudinal temperature distribution of fire-induced ceiling flow in tunnels with different sectional coefficients[J]. Tunnelling and Underground Space Technology, 2016, 54: 49-60.
[39] WANG F, WENG M C, HAN J Q, et al. Effect of metro train on the critical driving force for preventing smoke back-layering in tunnel fires[J]. Fire and Materials, 2022, 46(6): 927-942.
[40] HU P, ZHANG Z Y, ZHANG X C, et al. An experimental study on the transition velocity and smoke back-layering length induced by carriage fire in a ventilated tunnel[J]. Tunnelling and Underground Space Technology, 2020, 106: 103609.
[41] SU Z H, LI Y F, FENG S, et al. A study of the critical velocity and the confinement velocity of fire accident in a longitudinally ventilated underground train with different door opening scenarios[J]. Tunnelling and Underground Space Technology, 2023, 131: 104776.
[42] 刘畅. 地铁隧道联络区域火灾烟气通风控制研究[D].沈阳: 东北大学, 2019. LIU Chang. Study of ventilation control for fire-induced smoke in metro tunnel conjunction area[D].Shenyang: Northeastern University, 2019.
[43] FENG S, LI Y F, HOU Y S, et al. Study on the critical velocity for smoke control in a subway tunnel cross-passage[J]. Tunnelling and Underground Space Technology, 2020, 97: 103234.
[44] 王奕然, 刘垚, 祝岚, 等. 取消地铁区间联络通道防火门的探讨[J]. 都市快轨交通, 2019, 32(1): 86-92. WANG Yiran, LIU Yao, ZHU Lan, et al. Canceling fire door in cross-passageway based on smoke dynamic simulation[J]. Urban Rapid Rail Transit, 2019, 32(1): 86-92.
[45] 高子鹤. 隧道内受限火羽流行为特征及竖井自然排烟机理研究[D].合肥: 中国科学技术大学, 2016. GAO Zihe. Studies on characteristics of confined fire plumes and mechanism of natural smoke exhaust by shaft in tunnel fires[D].Hefei: University of Science and Technology of China, 2016.
[46] 篮杰. 地铁车站火灾情况下“吸穿效应”对机械排烟效率的影响分析[J]. 城市轨道交通研究, 2019, 22(4): 35-38. LAN Jie. Analysis of plug-holing influence on mechanical smoke extraction efficiency under metro station fire[J]. Urban Mass Transit, 2019, 22(4): 35-38.
[47] 史玉晓, 张树平. 竖井对地铁隧道自然排烟影响的数值模拟[J]. 消防科学与技术, 2017, 36(6): 768-771. SHI Yuxiao, ZHANG Shuping. Numerical simulation of the influence of shaft on natural smoke exhaust of subway tunnel[J]. Fire Science and Technology, 2017, 36(6): 768-771.
[48] JI J, GAO Z H, FAN C G, et al. Large eddy simulation of stack effect on natural smoke exhausting effect in urban road tunnel fires[J]. International Journal of Heat and Mass Transfer, 2013, 66: 531-542.
[49] FAN C G, JI J, WANG W, et al. Effects of vertical shaft arrangement on natural ventilation performance during tunnel fires[J]. International Journal of Heat and Mass Transfer, 2014, 73: 158-169.
[50] 范传刚. 隧道火灾发展特性及竖井自然排烟方法研究[D]. 合肥: 中国科学技术大学, 2015. FAN Chuangang. Studies on characteristics of tunnel fire development and natural ventilation mode using shafts[D]. Hefei: University of Science and Technology of China, 2015.
[51] CONG H Y, WANG X S, ZHU P, et al. Improvement in smoke extraction efficiency by natural ventilation through a board-coupled shaft during tunnel fires[J]. Applied Thermal Engineering, 2017, 118: 127-137.
[52] 陈斯, 陶涛, 周昕怡. 地铁车厢火灾典型场景疏散仿真研究[J]. 城市轨道交通研究, 2023, 26(12): 147-154. CHEN Si, TAO Tao, ZHOU Xinyi. Evacuation study of metro compartment fire typical scenarios based on numerical simulation[J]. Urban Mass Transit, 2023, 26(12): 147-154.
[53] LI X L, HUANG Z Y, FANG Z M, et al. An experimental study on the effectiveness of fire warnings on evacuation from a metro train: the response phase[J]. International Journal of Disaster Risk Reduction, 2022, 76: 103019.
[54] 赵丹, 郭志国, 刘超时, 等. 高速公路隧道火灾应急疏散模拟与策略[J]. 地下空间与工程学报, 2023, 19(6): 2072-2080. ZHAO Dan, GUO Zhiguo, LIU Chaoshi, et al. Research on simulation and strategy of fire emergency evacuation in highway tunnel[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(6): 2072-2080.
[55] QIU H P, WANG X, LIN P, et al. Effects of step time and neighbourhood rules on pedestrian evacuation using an extended cellular automata model considering aggressiveness[J]. Physica A: Statistical Mechanics and Its Applications, 2024, 636: 129567.
[56] 孙安实. 地铁区间隧道列车火灾人员逃生及联络通道设置参数研究[D].西安: 长安大学, 2018. SUN Anshi. Study on the escape of personnel from fire and the setting parameters of communication channels in subway tunnel fire[D]. Xi'an: Changan University, 2018.
[57] CHEN J F, LONG Z, WANG L, et al. Fire evacuation strategy analysis in long metro tunnels[J]. Safety Science, 2022, 147: 105603.
[1] 张亮亮. 纵向排烟V形坡隧道火灾烟流特性现场火灾试验研究[J]. 隧道与地下工程灾害防治, 2023, 5(2): 71-79.
[2] 戎贤, 张晓巍, 孙子正, 张一鸣. 公路隧道智能火灾应急与疏散体系结构[J]. 隧道与地下工程灾害防治, 2020, 2(3): 23-29.
[3] 蔡燕燕,朱要亮,彭健,刘荣标,黄少强,胡润民,俞缙. 地铁装配式外置槽道火灾下温度分布与温度应力数值模拟[J]. 隧道与地下工程灾害防治, 2019, 1(3): 87-95.
[4] 王明年,于丽,李琦,王旭. 高速铁路隧道防灾疏散救援技术研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(2): 13-23.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn