Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (4): 20-26    DOI: 10.19952/j.cnki.2096-5052.2024.04.03
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
交通噪声数据质量控制方法及其在面波勘探中的应用
宋长青,方晓正,谢继安
广东电网有限责任公司广州供电局, 广东 广州 510620
Traffic noise data quality control method and its application in surface wave exploration
SONG Changqing, FANG Xiaozheng, XIE Ji'an
Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, Guangdong, China
下载:  PDF (11097KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 交通噪声面波勘探在城市浅地表勘探中具有巨大的潜力,但频散信息成像质量较差。为了解决面波在城市浅地表勘探中的应用难题,提出一种适用于交通噪声的数据质量控制方法,通过信噪比数据筛选及相位加权叠加进行质量控制,有效提高了交通噪声面波频散成像信噪比及分辨率,拾取了更高精度的频散信息,应用本研究提出的交通噪声数据质量控制方法,在广州凰岗电力隧道实测数据中进行验证,取得了显著的效果。本研究方法为交通噪声面波勘探提供了一种有效的数据质量控制方法,有利于推广交通噪声在面波勘探中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋长青
方晓正
谢继安
关键词:  固体地球物理  交通噪声  面波勘探  数据质量控制    
Abstract: Traffic noise surface wave exploration holds significant promise for urban shallow subsurface investigations. However, current dispersion data is often limited by poor signal quality. To address these challenges, this research proposed a data quality control method specifically designed for traffic noise. The method enhanced signal-to-noise ratios through data screening and phase-weighted superposition, effectively improving the quality of the traffic noise surface waves. These improvements in signal-to-noise ratio and resolution contribute to more accurate dispersion imaging, as demonstrated by successful application to data from the Guangzhou Huanggang Power Tunnel. This research introduced a robust data quality control approach for traffic noise surface wave exploration, enabling broader use of traffic noise in surface wave investigations.
Key words:  solid earth physics    traffic noise    surface wave exploration    data quality control
收稿日期:  2024-05-29      修回日期:  2024-08-18      发布日期:  2025-01-08     
中图分类号:  P31  
基金资助: 南方电网公司科技资助项目(080000KK52210038/GZHKJXM20210057)
作者简介:  宋长青(1972—),男,黑龙江佳木斯人,高级工程师,硕士,主要研究方向为城市市政建设与工程管理. E-mail: songchangqing@gzps.corp.csg
引用本文:    
宋长青, 方晓正, 谢继安. 交通噪声数据质量控制方法及其在面波勘探中的应用[J]. 隧道与地下工程灾害防治, 2024, 6(4): 20-26.
SONG Changqing, FANG Xiaozheng, XIE Ji'an. Traffic noise data quality control method and its application in surface wave exploration. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 20-26.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I4/20
[1] 王梦恕. 中国盾构和掘进机隧道技术现状、存在的问题及发展思路[J]. 隧道建设, 2014, 34(3): 179-187. WANG Mengshu. Tunneling by TBM/shield in China: state-of-art, problems and proposals[J]. Tunnel Construction, 2014, 34(3): 179-187.
[2] 钱七虎. 水下隧道工程实践面临的挑战、对策及思考[J]. 隧道建设, 2014, 34(6): 503-507. QIAN Qihu. Challenges in construction of underwater tunnels and countermeasures[J]. Tunnel Construction, 2014, 34(6): 503-507.
[3] 冯爱军.中国城市轨道交通2021年数据统计与发展分析[J]. 隧道建设, 2022, 42(2): 336-341. FENG Aijun. Data statistics and development analysis of urban rail transit in China in 2021[J]. Tunnel Construction, 2022, 42(2): 336-341.
[4] 陈磊, 李术才, 刘斌, 等. 基于椭圆展开共反射点叠加的隧道地震波超前探测成像方法与应用[J]. 岩土工程学报, 2018, 40(6): 1029-1038. CHEN Lei, LI Shucai, LIU Bin,et al. Imaging method of seismic advanced detection in tunnels based on ellipse evolving CRP stacking and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1029-1038.
[5] 蒋培玉, 沈斐敏. 公路隧道事故预防分析[J]. 安全与环境工程, 2009, 16(2): 66-70. JIANG Peiyu, SHEN Feimin. Analysis on the road tunnel accident prevention[J]. Safety and Environmental Engineering, 2009, 16(2): 66-70.
[6] WANG Y C, JING H W, SU H J, et al. Effect of a fault fracture zone on the stability of tunnel-surrounding rock[J]. International Journal of Geomechanics, 2017, 17(6):04016135.
[7] 宋杰. 隧道施工不良地质三维地震波超前探测方法及其工程应用[D]. 济南: 山东大学, 2016. SONG Jie. Three-dimensional seismic wave advanced detection method for poor geological conditions in tunnel construction and its engineering application[D].Jinan:Shandong University, 2016.
[8] YILMAZ Ö, ESER M, BERILGEN M. A case study of seismic zonation in municipal areas[J]. The Leading Edge, 2006, 25(3): 319-330.
[9] XIA J H, MILLER R D, PARK C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 1999, 64(3): 691.
[10] HU S Q, LUO S, YAO H J. The frequency-bessel spectrograms of multicomponent cross-correlation functions from seismic ambient noise[J]. Journal of Geophysical Research(Solid Earth), 2020, 125(8): e2020JB019630.
[11] ZHOU J, LI Z B, CHEN X F. Extending the frequency band of surface-wave dispersion curves by combining ambient noise and earthquake data and self-adaptive normalization[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(5):e2022JB026040.
[12] 郝磊. 基于盾构掘进震动噪声的不良地质被动源面波探测方法研究[D]. 济南: 山东大学, 2021. HAO Lei. Study on passive source surface wave detection method in adverse geology based on vibration noise of shield tunneling[D]. Jinan: Shandong University, 2021.
[13] MARI J L. Estimation of static corrections for shear-wave profiling using the dispersion properties of Love waves[J]. Geophysics, 1984, 49(8): 1169-1179.
[14] PARK C B, MILLER R D, XIA J H. Multichannel analysis of surface waves[J]. Geophysics, 1999, 64(3): 800-808.
[15] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用: 以苏州河地区为例[J]. 地球物理学报, 2020, 63(1): 247-255. LI Xueyan, CHEN Xiaofei, YANG Zhentao, et al. Application of high-order surface waves in shallow exploration: an example of the Suzhou River, Shanghai[J]. Chinese Journal of Geophysics, 2020, 63(1): 247-255.
[16] AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[17] 曹卫平,黄旭日,姚海,等. 分布式光纤声波传感系统记录的交通噪声的干涉处理分析[J]. 地球物理学报, 2021, 64(7): 2530-2539. CAO Weiping, HUANG Xuri, YAO Hai, et al. Seismic interferometry for traffic noise recorded by a distributed acoustic sensing system[J]. Chinese Journal of Geophysics, 2021, 64(7): 2530-2539.
[18] CURTIS A, HALLIDAY D. Source-receiver wave field interferometry[J]. Physical Review E,Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(4): 046601.
[19] NAKATA N, SNIEDER R. Estimating near-surface shear wave velocities in Japan by applying seismic interferometry to KiK-net data[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B1): B01308.
[20] SCHIMMEL M, PAULSSEN H. Noise reduction and detection of weak, coherent signals through phase-weighted stacks[J]. Geophysical Journal International, 1997, 130(2): 497-505.
[21] SCHIMMEL M, GALLART J. Frequency-dependent phase coherence for noise suppression in seismic array data[J]. Journal of Geophysical Research: Solid Earth, 2007, 112: B04303.
[22] 庞景尹. 浅地表被动源面波成像中数据筛选方法研究[D]. 武汉: 中国地质大学, 2019. PANG Jingyin. Research on data screening method in surface wave imaging of shallow surface passive sources[D]. Wuhan: China University of Geosciences, 2019.
[1] 宋长青, 方晓正, 谢继安. 交通噪声数据质量控制方法及其在面波勘探中的应用[J]. 隧道与地下工程灾害防治, 0, (): 1-10.
[2] 王佳铖, 赵志宏, 陈进帆, 贺洁, 周露明, 谭现锋. 深层地热能开采与储能系统模拟研究[J]. 隧道与地下工程灾害防治, 2024, 6(1): 84-93.
[3] 王佳铖, 赵志宏, 陈进帆, 贺洁, 周露明, 谭现锋. 深层地热能开采与储能系统模拟研究[J]. 隧道与地下工程灾害防治, 0, (): 1-13.
[1] WANG Shengtao, CHEN Pengtao, LIU Aiwu, SUN Wenhao, ZHANG Junru. Construction mechanics behavior of extra-large span continuous variable cross-section tunnels using dual guide tunnel advance-central column reverse excavation method[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 1 -11 .
[2] LIU Liying, OU Zhenfeng, YANG Chunshan, DUAN Shanglei. Numerical simulation and field measurement analysis of coastal structures under immersed tunnel trench excavation[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 12 -19 .
[3] SUN Chao, ZHANG Guangwei, DA Wuqiang, YU Zufeng. Anti-floating control technology for large-diameter shield tunnels of adjacent mountain[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 27 -37 .
[4] LIU Jianbin, YANG Zhiyong, RAO Li, WANG Shuying, FANG Kejun, WANG Zhuo, YANG Zebin. Optimization of construction logistics organization for multi-section service tunnels in ultra-deep shafts[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 38 -49 .
[5] GAO Xiancheng. Research on coal damage identification model based on ConDenseNet architecture and its optimization[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 90 -98 .
[6] LI Qidi, LIANG Qingguo, ZHOU Ren, YANG Jiawei, CAI Zunle. Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 50 -60 .
[7] ZHAO Zeqian, ZHU Min, BAO Xiaohua, YANG Chunshan, CHEN Xiangsheng. Assessing the blast resistance performance of ultra-large diameter shield tunnels passing under hazardous chemical containers at docks[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 61 -71 .
[8] ZHONG Jianmin, ZHANG Liangliang, HE Yingdao, LUO Chiheng, XIONG Yifan, WANG Chao. Key design techniques of the north extension project of Jinan Jiluo Road Yellow River Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 72 -80 .
[9] WEI Songyuan, LI Hanshuo, PENG Zhenhua, WANG Zhechao, LI Wei. Experimental analysis of vertical water curtain and effectiveness of water curtain system in an underground water sealed cavern[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 81 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn