Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (4): 38-49    DOI: 10.19952/j.cnki.2096-5052.2024.04.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超深竖井服务隧道多断面施工物流组织优化
刘建兵1,杨志勇1,饶李2*,王树英2,方克军1,王卓3,杨泽斌2
1.云桂铁路云南有限责任公司, 云南 昆明 650500;2.中南大学土木工程学院, 湖南 长沙 410075;3.中铁隧道局集团有限公司, 广东 广州 511458
Optimization of construction logistics organization for multi-section service tunnels in ultra-deep shafts
LIU Jianbin1, YANG Zhiyong1, RAO Li2*, WANG Shuying2, FANG Kejun1, WANG Zhuo3, YANG Zebin2
1. Yungui Railway Yunnan Co., Ltd., Kunming 650500, Yunnan, China;
2. School of Civil Engineering, Central South University, Changsha 410075, Hunan, China;
3. China Railway Tunnel Group Co., Ltd., Guangzhou 511458, Guangdong, China
下载:  PDF (13553KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以高黎贡山超深竖井服务隧道多断面开挖施工为工程背景,结合SUMO微观交通数值仿真软件模拟结果,对井底车场、井下物流组织以及竖井垂直运输系统开展优化研究。研究表明:井底采用无轨运输替代有轨运输,使竖井出渣能力提高至1 000 m3/d,增幅达25%,井底车场布局、断面尺寸及洞室配置优化后,有效提高运输效率并降低成本;基于井下物流组织数值仿真结果,渣土运输车的平均运行速度为最大设计速度的74%;当掌子面至井底车场距离增至500 m并增设横通道时,虽未出现交通冲突点,但车辆车距过近,存在堵车风险。针对竖井垂直运输系统,实施主、副井改绞换装,并对提升系统进行选型与安全验算,提出了相应的安全控制措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘建兵
杨志勇
饶李
王树英
方克军
王卓
杨泽斌
关键词:  超深竖井  井底物流  数值仿真  垂直运输  设计优化    
Abstract: The multi-section excavation of the ultra-deep shaft service tunnel in Gaoligong Mountain was used as the engineering background, and the optimization of the shaft bottom yard, underground logistics organization, and vertical shaft transportation system was conducted based on the results of SUMO microscopic traffic numerical simulation software. The research results showed that rail transport at the shaft bottom was replaced with non-rail transport, which increased the shaft's mucking capacity to 1 000 m3/d, representing a 25% improvement. The layout of the shaft bottom yard, cross-sectional dimensions, and chamber configuration were optimized, which significantly enhanced transportation efficiency and reduced costs. Numerical simulation results of underground logistics organization showed that the average operating speed of muck transport vehicles was 74% of the maximum design speed. When the distance between the face and the shaft bottom yard was increased to 500 m and a cross-passage was added, no traffic conflict points were observed; however, when the vehicle spacing was too close, there was a risk of congestion. The vertical shaft transportation system was upgraded by modifying the hoisting systems in both the main and secondary shafts. The hoisting equipment was selected, and safety verification was performed, with corresponding safety control measures proposed.
Key words:  ultra-deep shaft    shaft bottom logistics    numerical simulation    vertical transportation    design optimization
收稿日期:  2024-10-21      修回日期:  2024-12-17      发布日期:  2025-01-08     
中图分类号:  U455.8  
基金资助: 中国国家铁路集团有限公司科技研究开发计划重点课题资助项目(N2022G067)
作者简介:  刘建兵(1976— ),男,云南牟定人,高级工程师,主要研究方向为铁路建设管理. E-mail: 1938652680@qq.com. *通信作者简介:饶李(2001— ),男,浙江衢州人,硕士研究生,主要研究方向为隧道与地下工程. E-mail:raoli_01@163.com
引用本文:    
刘建兵, 杨志勇, 饶李, 王树英, 方克军, 王卓, 杨泽斌. 超深竖井服务隧道多断面施工物流组织优化[J]. 隧道与地下工程灾害防治, 2024, 6(4): 38-49.
LIU Jianbin, YANG Zhiyong, RAO Li, WANG Shuying, FANG Kejun, WANG Zhuo, YANG Zebin. Optimization of construction logistics organization for multi-section service tunnels in ultra-deep shafts. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 38-49.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I4/38
[1] 洪开荣. 超长深埋高地应力TBM隧道修建关键技术[J]. 铁道学报, 2022, 44(3): 1-23. HONG Kairong. Key technology for construction of ultra-long and deep-buried TBM tunnels with high geostress[J]. Journal of the China Railway Society, 2022, 44(3): 1-23.
[2] 严金秀. 中国隧道工程技术发展40年[J]. 隧道建设(中英文), 2019, 39(4): 537-544. YAN Jinxiu.Achievements and challenges of tunneling technology in China over past 40 years[J]. Tunnel Construction, 2019, 39(3): 537-544.
[3] 洪开荣,刘永胜,潘岳. 钻爆法山岭隧道修建技术发展与展望[J]. 现代隧道技术, 2024, 64(2): 67-79. HONG Kairong, LIU Yongsheng, PAN Yue.Development and prospects of construction technology in drill-and-blast mountain tunnel[J]. Modern Tunnelling Technology, 2024, 64(2): 67-79.
[4] 冷希乔,严金秀,韩瑀萱. 公路隧道深大竖井设计及施工方法探讨[J]. 公路, 2019, 64(8): 221-225. LENG Xiqiao, YAN Jinxiu, HAN Yuxuan. Exploration and discussion on deformation law and construction method of deep shaft of highway tunnel[J]. Highway, 2019, 64(8): 221-225.
[5] 赵东平,吴楠,李华,等. 隧道超深竖井设计施工技术研究现状及展望[J]. 铁道勘察, 2022, 48(3): 10-16. ZHAO Dongpin, WU Nan, LI Hua, et al. Research status and prospect of design and construction technology of ultra-deep shaft for tunnel[J]. Railway Investigation and Surveying, 2022, 48(3): 10-16.
[6] 杜良平. 终南山隧道大直径深竖井围岩稳定性研究[D]. 上海: 同济大学, 2008. DU Liangping. Surrounding rock stability study of Zhongnanshan large section and deep shaft[D]. Shanghai: Tongji University, 2008.
[7] 陈新. 引水隧洞大坡度斜井井底车场设计与施工优化研究[J]. 江西建材, 2023(12): 317-318. CHEN Xin. Study on design and construction optimization of large slope inclined shaft bottom yard of diversion tunnel[J]. Jiangxi Building Materials, 2023(12): 317-318.
[8] 宋国忠,张辉,赵琦. 深井煤矿井底车场优化设计[J]. 山东煤炭科技, 2020(9): 75-77. SONG Guozhong, ZHANG Hui, ZHAO Qi. Optimized design of deep coal mine pit bottom[J]. Shandong Coal Science and Technology, 2020(9): 75-77.
[9] 廖健都,王陈涛,肖云伟,等. 滇中引水有轨运输地下车场布置[J]. 云南水力发电, 2021, 37(6): 133-137. LIAO Jiandu, WANG Chentao, XIAO Yunwei, et al. Layout of underground parking yard for rail transportin Yunnan Water Diversion Project[J]. Yunnan Water Power, 2021, 37(6): 133-137.
[10] 杨金星. 煤矿井下运输方式及设备选型技术研究[J].山东煤炭科技, 2021, 39(8): 152-153. YANG Jinxing. Research on underground transportation mode and equipment selection technology in coal mine[J]. Shandong Coal Science and Technology, 2021, 39(8): 152-153.
[11] 聂都超,周国,邹雄,等. 某金矿竖井提升运输系统分析与论证[J]. 采矿技术, 2021, 21(3): 158-160. NIE Duchao, ZHOU Guo, ZOU Xiong, et al. Analysis and demonstration of a gold mine shaft hoisting and transportation system[J]. Mining Technology, 2021, 21(3): 158-160.
[12] 向应刚. 垂直运输系统在高竖井开挖施工中的应用[J]. 技术与市场, 2011, 18(12): 36-37. XIANG Yinggang.Application of vertical transportation system in high shaft excavation construction[J]. Technology and Market, 2011, 18(12): 36-37.
[13] 张海波, 杨昌宇. 中国最长的铁路隧道[J]. 工程(英文), 2018, 4(2): 7-10. ZHANG Haibo, YANG Changyu.The longest railway tunnel in China[J]. Engineering, 2018, 4(2): 7-10.
[14] 刘黎,张平,王唤龙,等. 高黎贡山隧道1号竖井设计及分析[J]. 隧道建设(中英文), 2020, 40(增刊2): 188-195. LIU Li, ZHANG Ping, WANG Huanlong, et al. Design and analysis of No.1 shaft in Gaoligongshan Tunnel[J]. Tunnel Construction, 2020, 40(Suppl.2): 188-195.
[15] 巩江峰,唐国荣,王伟,等. 截至2021年底中国铁路隧道情况统计及高黎贡山隧道设计施工概况[J]. 隧道建设(中英文), 2022, 42(3): 508-517. GONG Jiangfeng, TANG Guorong, WANG Wei, et al. Statistics of China's railway tunnels by the end of 2021 and sesign & construction overview of Gaoligongshan Tunnel[J]. Tunnel Construction, 2022, 42(3): 508-517.
[16] 洪开荣. 近2年我国隧道及地下工程发展与思考(2017—2018年)[J]. 隧道建设(中英文), 2019, 39(5): 710-723. HONG Kairong.Development and thinking of tunnels and underground engineering in China in recent 2 years(from 2017 to 2018)[J]. Tunnel Construction, 2019, 39(5): 710-723.
[17] 李光伟,杜宇本,蒋良文,等. 大瑞铁路高黎贡山越岭段主要工程地质问题与地质选线[J]. 地质力学学报, 2015, 21(1): 73-86. LI Guangwei, DU Yuben, JIANG Liangwen, et al. Research on the engineering geology condition and railway routes comparison along the mt. Gaoligong section, Dali-Ruili Railway[J]. Journal of Geomechanics, 2015, 21(1): 73-86.
[18] 卓越,高广义. 大瑞铁路高黎贡山隧道施工挑战与对策[J]. 隧道建设(中英文), 2019, 39(5): 810-819. ZHUO Yue, GAO Guangyi.Challenges and countermeasures in construction of Gaoligongshan Tunnel of Dali-Ruili Railway[J]. Tunnel Construction, 2019, 39(5): 810-819.
[19] 崔居福, 胡本旭, 夏辉, 等. SUMO平台下多种车辆跟驰模型的仿真对比分析[J]. 重庆大学学报, 2021, 44(7): 43-54. CUI Jufu, HU Benxu, XIA Hui, et al. Comparative analysis of simulation of multi-car-following models under SUMO platform[J]. Journal of Chongqing University, 2021, 44(7): 43-54.
[20] 戴冀峰,马健霄. 交通工程概论[M]. 北京:人民交通出版社, 2006.
[21] 国家安全生产监督管理总局. 煤矿安全规程:中华人民共和国应急管理部令第8号[S]. 北京:国家安全生产监督管理总局, 2022.
[1] 赵兴东,李洋洋,张姝婧,陈玉民,王成龙,王玺. 超深井筒开挖扰动应力响应特征分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 19-28.
[2] 陶永虎,饶军应,熊鹏,彭浩,聂崇欣,赵昌杰,彭星,孔德禹,王亚奇. 地铁暗挖隧道下穿既有火车站站场施工方案安全性评估[J]. 隧道与地下工程灾害防治, 2020, 2(4): 74-82.
[3] 申志军,皮圣. 浩吉重载铁路隧道建设管理与技术创新[J]. 隧道与地下工程灾害防治, 2020, 2(1): 42-52.
[1] WANG Shengtao, CHEN Pengtao, LIU Aiwu, SUN Wenhao, ZHANG Junru. Construction mechanics behavior of extra-large span continuous variable cross-section tunnels using dual guide tunnel advance-central column reverse excavation method[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 1 -11 .
[2] SONG Changqing, FANG Xiaozheng, XIE Ji'an. Traffic noise data quality control method and its application in surface wave exploration[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 20 -26 .
[3] LIU Liying, OU Zhenfeng, YANG Chunshan, DUAN Shanglei. Numerical simulation and field measurement analysis of coastal structures under immersed tunnel trench excavation[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 12 -19 .
[4] SUN Chao, ZHANG Guangwei, DA Wuqiang, YU Zufeng. Anti-floating control technology for large-diameter shield tunnels of adjacent mountain[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 27 -37 .
[5] GAO Xiancheng. Research on coal damage identification model based on ConDenseNet architecture and its optimization[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 90 -98 .
[6] LI Qidi, LIANG Qingguo, ZHOU Ren, YANG Jiawei, CAI Zunle. Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 50 -60 .
[7] ZHAO Zeqian, ZHU Min, BAO Xiaohua, YANG Chunshan, CHEN Xiangsheng. Assessing the blast resistance performance of ultra-large diameter shield tunnels passing under hazardous chemical containers at docks[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 61 -71 .
[8] ZHONG Jianmin, ZHANG Liangliang, HE Yingdao, LUO Chiheng, XIONG Yifan, WANG Chao. Key design techniques of the north extension project of Jinan Jiluo Road Yellow River Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 72 -80 .
[9] WEI Songyuan, LI Hanshuo, PENG Zhenhua, WANG Zhechao, LI Wei. Experimental analysis of vertical water curtain and effectiveness of water curtain system in an underground water sealed cavern[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 81 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn