Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
软弱破碎地层地铁车站钢管桩柱拱盖法施工力学特性及其应用
王立川1,2,贺维国3,张俊儒2,4*,武宏斌1,5,蒋新强1,5,章慧健2,4,王文6,黄林祥1,7
(1.中铁十八局集团有限公司,天津300222;2.西南交通大学土木工程学院,四川 成都 610031;3.中铁第六勘察设计院集团有限公司,天津300133;4.西南交通大学交通隧道工程教育部重点实验室,四川 成都610031;5.中铁十八局集团第四工程有限公司,天津300350;6.中交第三公路工程局有限公司,北京100010;7.中铁十八局集团市政工程有限公司,天津300222)
Application of the steel pipe pile arch cover method in large-span underground metro stations in weak and fragmented rock strata
WANG Lichuan1,2 ,HE Weiguo3 ,ZHANG Junru2,4* ,WU Hongbin1,5 ,JIANG Xinqiang1,5 ,ZHANG Huijian2,4 ,WANG Wen6 ,HUANG Linxiang1,7
(1.China Railway 18th Bureau Group Co., Ltd., Tianjin 300222,China;
2.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031,Sichuan, China;
3. China Railway Sixth Survey and Design Institute Group Co., Ltd., Tianjin 300133,China;
4.Key Laboratory of Transportation Tunnel Engineering (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, Sichuan, China;
5. The 4th Engineering Co., Ltd. of China Railway 18th Bureau Group, Tianjin 300350,China;
6.China Communications Third Highway Engineering Bureau Co., Ltd., Beijing 100010,China;
7.Municipal Engineering Co., Ltd. of China Railway 18th Bureau Group, Tianjin 300222,China; )
下载:  PDF (2473KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决传统拱盖法依赖下部较硬基岩支撑,在软弱破碎地层中难以发挥作用的问题,依托贵阳市轨道交通S1线锦江路站项目,提出在软弱破碎地层中能有效发挥拱盖法功效的钢管桩柱拱盖法,并对其施工力学特性进行研究。研究结果表明:钢管桩柱拱盖法在拱盖基础下方增设了钢管桩,一方面钢管桩作为拱盖的基础提高其承载能力,另一方面车站下半断面开挖时,起到“超前支护”的作用,约束侧墙岩体的变形,确保主体结构的整体稳定;与传统拱盖法相比,钢管桩柱拱盖法可有效减小地层沉降,钢管桩分担围岩压力从而降低初期支护结构体系的最大、最小主应力;钢管桩柱拱盖法施工过程中,拱盖部分的施作是工法的关键,拱盖及车站初期支护施工完成后,结构应力最大值位于边墙与仰拱交界区域,是施工过程中关注的重点。钢管桩柱拱盖法运用四导洞双侧壁导坑开挖、型钢混凝土拱盖与钢管桩柱相结合的支护体系,在贵阳市轨道交通S1线锦江路站得到成功应用,依托分导洞施工模式、专用台车模注及同步浇筑工艺的高效协同,较传统拱盖法缩短工期约10个月,显著提升作业效率,并降低了对城市交通的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王立川
贺维国
张俊儒
武宏斌
蒋新强
章慧健
王文
黄林祥
关键词:  钢管桩柱拱盖法  暗挖地铁车站  软弱破碎地层  施工力学特性    
Abstract: To address the issue that the traditional arch cover method relies on the support of hard underlying bedrock and is difficult to function in soft and broken strata, the steel pipe pile column arch cover method, which can effectively exert the efficacy of the arch cover method in soft and broken strata, was proposed based on the Jinjiang Road Station project of Guiyang Rail Transit Line S1, and its construction mechanical characteristics were studied. The research results showed that: steel pipe piles were added below the arch cover foundation in the steel pipe pile column arch cover method. On the one hand, the steel pipe piles served as the foundation of the arch cover to improve its bearing capacity; on the other hand, when the lower half section of the station was excavated, they played the role of "advanced support", constrained the deformation of the sidewall rock mass, and ensured the overall stability of the main structure. Compared with the traditional arch cover method, the steel pipe pile column arch cover method could effectively reduce stratum settlement, and the steel pipe piles shared the surrounding rock pressure, thereby reducing the maximum and minimum principal stresses of the initial support structure system. During the construction of the steel pipe pile column arch cover method, the construction of the arch cover part was the key to the method. After the construction of the arch cover and the station's initial support was completed, the maximum structural stress was located in the junction area between the sidewall and the inverted arch, which was the focus of attention during construction. The steel pipe pile column arch cover method, which uses a support system combining four pilot tunnel double-sidewall drift excavation, steel-reinforced concrete arch cover, and steel pipe pile columns, was successfully applied in the Jinjiang Road Station of Guiyang Rail Transit Line S1. Relying on the efficient coordination of the divided pilot tunnel construction mode, special trolley mold casting, and synchronous pouring technology, the construction period was shortened by approximately 10 months compared with the traditional arch cover method, the operation efficiency was significantly improved, and the impact on urban traffic was reduced.
Key words:  steel pipe pile arch cover method    underground metro station    weak and fragmented rock strata    construction mechanical characteristics
收稿日期:  2025-01-05      修回日期:  2025-04-05      发布日期:  2025-05-19     
中图分类号:  U455.4  
基金资助: 国家自然科学基金资助项目(52478416);中铁十八局集团有限公司科技开发资助项目(G23-07-S);中交第三公路工程局有限公司科技开发资助项目(TLGS-CQ-7-JS-12-2020,JGGS-CQ-7-JS-04-2023-09)
通讯作者:  张俊儒(1978—),男,山西神池人,教授,博士生导师,博士,主要研究方向为隧道围岩稳定性与支护理论。   
作者简介:  王立川(1965—),男,河南孟州人,正高级工程师兼职教授,博士,主要研究方向为隧道与地下工程的建设技术和咨询、爆破振动与冲击波传播规律等。E-mail:wlc773747@126.com
引用本文:    
王立川, 贺维国, 张俊儒, 武宏斌, 蒋新强, 章慧健, 王文, 黄林祥. 软弱破碎地层地铁车站钢管桩柱拱盖法施工力学特性及其应用[J]. 隧道与地下工程灾害防治, .
WANG Lichuan , HE Weiguo, ZHANG Junru , WU Hongbin , JIANG Xinqiang , ZHANG Huijian , WANG Wen , HUANG Linxiang. Application of the steel pipe pile arch cover method in large-span underground metro stations in weak and fragmented rock strata. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-14.
链接本文:  
[1] 李兆平, 史磊磊. 北京地区暗挖地铁车站结构设计方法研究进展综述[J]. 隧道与地下工程灾害防治, 2019, 1(3): 14-21.
[1] ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47 -56 .
[2] Gou Xiaojun, Zhao Jinquan, Ji Wei, Hua Xiaoming, fan zhanfeng. Numerical simulation of radar characteristics of adverse geological structures in tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -19 .
[3] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[4] LI Lianran, REN Zhouhong, WANG Bin, ZHANG Quan, HUANG Hao, LIU Jijin, XU Haoyu, GUO Qian. Inverse wavefield transform method for opposing coils transient electromagnetic data and its application in ahead prospecting in the  lead-zinc mine at Huize[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -20 .
[5] WEI Songyuan, MA Jingyi, PENG Zhenhua, LIU Jianli, LI Wei. Reliability analysis of surrounding rocks stability of underground water-sealed caverns[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -3 .
[6] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 1 -10 .
[7] XIAO Peiwei, YANG Xingguo, QIAN Hongjian, WANG Haofan, LI Biao, XU Nuwen. The best supporting time of hydraulic tunnels based on multiple monitoring information[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 11 -21 .
[8] DING Jianqi, WANG Chencheng, ZHU Xiangshan, ZHANG Xiang, FU Gang, XU Jingmin. Influence mechanism of large diameter tunnel construction on adjacent buildings[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 22 -34 .
[9] WU Jiangtao, LI Yingjie. The lightweight object detection algorithm for obstacles in tunnel construction environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 48 -56 .
[10] ZHANG Bin, JIA Haibin, LI Atao, WANG Huaiyuan, CHEN Yuchuan, YU Wanquan, QIN Changkun. Prediction method for mining-induced deformation in coal mine roadways based on Bayesian updating[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 57 -67 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn