Abstract: In order to investigate the interaction mechanism between a shield machine and concrete pile foundations during cutting, the cutting-pile project at the Zhonghe Building group on the east alignment of the Haizhu Bay Highway Tunnel was selected as the case study. Based on on-site exploration data, a finite-element model was employed to simulate the process of cutting a single pile with the disc cutter. The cutting forces on the disc cutter and the dynamic responses of both the soil and the pile were analyzed in detail. The simulation results showed that the pile’s displacement response during the penetration phase was significantly greater than during the cutting phase, with the responses during penetration being concentrated mainly in the y and z directions. Moreover, the mean normal force acting on the disc cutter was higher in the penetration phase than in the cutting phase; when the strength contrast between adjacent media was large, the cutter force exhibited a pronounced discontinuity at their interface, thereby increasing the possibility of fatigue damage. The responses of the pile, the surrounding soil, and the cutter were thus characterized throughout the cutting process, and the findings were expected to provide valuable guidance for reducing safety risks in similar shield tunneling projects.