Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (2): 83-91    
  本期目录 | 过刊浏览 | 高级检索 |
基于可能性理论的地下工程风险裕度模型
戎晓力1,文祝1*,郝以庆2,卢浩3,熊自明3
1. 南京理工大学机械工程学院, 江苏 南京 210094;2. 中国人民解放军火箭军士官学校, 山东 青州 262500;3. 中国人民解放军陆军工程大学国防工程学院, 江苏 南京 210007
Risk margin model of underground engineering based on possibility theory
RONG Xiaoli1, WEN Zhu1*, HAO Yiqing2, LU Hao3, XIONG Ziming3
1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China;
2. The Rocket Army's Sergeant School of PLA, Qingzhou 262500, Shandong, China;
3. College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, Jiangsu, China
下载:  PDF (968KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 地下工程环境复杂,不可预见因素多,普遍存在高风险,且传统的风险评估方法主要是基于概率理论的损失估计,应用在实际工程中有局限性。风险评估的本质是不确定性的定量分析和评价。以地下工程中岩溶隧道掘进施工时发生突水的风险评估为例,进行基于可能性理论的风险裕度模型研究,研究发现在知识和信息匮乏以及考虑人的认知差异的条件下,可能性理论下的裕度模型更加符合工程实际情况,可为工程的决策和管理提供定量依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戎晓力
文祝
郝以庆
卢浩
熊自明
关键词:  地下工程  风险评估  可能性理论  定量分析  裕度    
Abstract: Underground engineering has complicated environment and unforeseen factors, so there are generally high risks. The traditional risk assessment method was mainly based on the loss theory of probability theory, which had limitations in practical projects. The essence of risk assessment was quantitative analysis and evaluation of uncertainty. The risk assessment of water inrush in the construction of karst tunnels in underground engineering as an example, and a risk margin model was conducted based on the possibility theory. It was found that under the condition of lack of information and people's cognitive differences, the margin model under the possibility theory was more in line with the actual situation of the project, which could provide quantitative basis for the decision-making and management of the project.
Key words:  underground engineering    risk assessment    possibility theory    quantitative analysis    margin
收稿日期:  2018-04-26                出版日期:  2019-06-30      发布日期:  2019-07-29      期的出版日期:  2019-06-30
中图分类号:  TU94  
基金资助: 国家自然科学基金资助项目(51479106)
通讯作者:  文祝(1990— ),男,四川西昌人,博士研究生,主要研究方向为地下工程风险评估. E-mail: wenzhu@njust.edu.cn   
作者简介:  戎晓力(1972— ),男,江苏句容人,博士,教授,主要研究方向为地下工程安全风险管理理论与技术. E-mail: wenzhu@njust.edu.cn. *通信作者:文祝(1990— ),男,四川西昌人,博士研究生,主要研究方向为地下工程风险评估. E-mail: wenzhu@njust.edu.cn
引用本文:    
戎晓力,文祝,郝以庆,卢浩,熊自明. 基于可能性理论的地下工程风险裕度模型[J]. 隧道与地下工程灾害防治, 2019, 1(2): 83-91.
RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 83-91.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I2/83
[1] 钱七虎. 迎接我国城市地下空间开发高潮[J]. 岩土工程学报, 1998, 20(1):112-113. QIAN Qihu. Greeting the high tide of the development of urban underground space in China[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1):112-113.
[2] 王梦恕. 二十一世纪是城市地下空间开发利用的年代[J]. 生命与灾害, 2006(增刊1):14-15. WANG Mengshu. Twenty-first century is the age of urban underground space development and utilization[J]. Life & Disaster, 2006(Suppl.1):14-15.
[3] 钱七虎, 戎晓力. 中国地下工程安全风险管理的现状、问题及相关建议[J]. 岩石力学与工程学报, 2008, 27(4):649-655. QIAN Qihu, RONG Xiaoli. State, issues and relevant recommendations for security risk management of China's underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4):649-655.
[4] ESKESEN S D, TENGBORG P, KAMPMANN J, et al. Guidelines for tunnelling risk management: International Tunnelling Association, Working Group No. 2[J]. Tunnelling & Underground Space Technology, 2004, 19(3):217-237.
[5] PAN N F. Fuzzy AHP approach for selecting the suitable bridge construction method[J]. Automation in Construction, 2008, 17(8):958-965.
[6] SOUSA R L, EINSTEIN H H. Risk analysis during tunnel construction using Bayesian Networks: Porto Metro case study[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2012, 27(1):86-100.
[7] BROWN E T. Risk assessment and management in underground rock engineering—an overview[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(3):193-204.
[8] EINSTEIN H H. Risk and risk analysis in rock engineering[J]. Tunnelling & Underground Technology, 1996, 11(2):141-155.
[9] ZHANG L, SKIBNIEWSKI M J, WU X, et al. A probabilistic approach for safety risk analysis in metro construction[J]. Safety Science, 2014, 63(3):8-17.
[10] HELTON J C. Quantification of margins and uncertainties:conceptual and computational basis[J]. Reliability Engineering & System Safety, 2011, 96(9):959-964.
[11] HEMEZ F M, ATAMTURKTUR S. The dangers of sparse sampling for the quantification of margin and uncertainty[J]. Reliability Engineering & System Safety, 2011, 96(9):1220-1231.
[12] HELTON J C. Conceptual and computational basis for the quantification of margins and uncertainty[M]. United States: Sandia National Laboratories, 2009.
[13] HELTON J C, JOHNSON J D. Quantification of margins and uncertainties:alternative representations of epistemic uncertainty[J]. Reliability Engineering & System Safety, 2011, 96(9):959-964.
[14] HAO Y, RONG X, LU H, et al. Quantification ofmargins and uncertainties for the risk of water inrush in a karst tunnel: representations of epistemic uncertainty with probability[J]. Arabian Journal for Science & Engineering, 2017, 43(1-3):1-14.
[15] DECOOMAN G. Possibility theory part I: measure- and integral-theoretic groundwork; Part II: conditional possibility; Part III: possibilistic independence[J]. International Journal of General Systems, 1997, 25(4):291-371.
[16] ZADEH LA. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1978, 1:3-28.
[17] HALPERN JY, FAGIN R. Two views of belief: belief as generalized probability and belief as evidence[J]. Artificial Intelligence, 1992, 54: 275-317.
[18] HELTON J C, JOHNSON J D, OBERKAMPF W L, et al. Representation of analysis results involving aleatory and epistemic uncertainty[J]. International Journal of General Systems, 2010, 39(6):605-646.
[19] 李利平. 高风险岩溶隧道突水灾变演化机理及其应用研究[D]. 济南: 山东大学, 2009. LI Liping. Study on catastrophe evolution mechanism of karst water inrush and its engineering application of high risk karst tunnel[D]. Jinan: Shandong University, 2009.
[20] 郭佳奇. 岩溶隧道防突厚度及突水机制研究[D]. 北京: 北京交通大学, 2011. GUO Jiaqi. Study on against-inrush thickness and waterburst mechanism of karst tunnel[D]. Beijing: Beijing Jiaotong University, 2011.
[21] BAUDRIT C, DUBOIS D. Practical representations of incomplete probabilistic knowledge[J]. Computational Statistics & Data Analysis, 2006, 51(1):86-108.
[22] BAUDRIT C, DUBOIS D, PERROT N. Representing parametric probabilistic models tainted with imprecision[J]. Fuzzy Sets & Systems, 2008, 159(15):1913-1928.
[23] MOFARRAH A. Fuzzy based health risk assessment of heavy metals introduced into the marine environment[J]. Water Quality Exposure & Health, 2011, 3(1):25-36.
[24] BAUDRIT C, DUBOIS D, GUYONNET D. Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(5):593-608.
[1] 张庆松,张连震,李鹏,冯啸. 地下工程富水软弱地层注浆加固理论研究新进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 47-57.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn