Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
补风方式对地铁隧道火灾烟气控制效果的研究
雷文君1,郭丽丽1,赵旭明1,邰传民1,齐悦2
(1.山东建筑大学热能工程学院,山东 济南 250101;2.冰轮环境技术股份有限公司,山东 烟台 264002)
Study on the effect of makeup air supplementation on fire smoke control in subway tunnel
LEI Wenjun1,GUO Lili1,ZHAO Xuming1,TAI Chuanmin1,QI Yue2
(1.School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China;
2.Integrated Equipment Industry Group Enterprise,Yantai 264002, Shandong, China)
下载:  PDF (3080KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决地铁隧道传统补风方式风量大、针对性不足的问题,提出基于人员疏散行为的呼吸区侧送与底部送风结合的补风方式,探究其对疏散通道烟气的控制效果。采用数值模拟的方法构建地铁区间隧道物理模型,对比分析自然补风、呼吸区侧送补风 、底部补风及组合补风下疏散通道内CO浓度、温度、能见度的分布规律。研究发现,自然补风对疏散通道火灾烟气的控制效果最差,能见度、CO浓度、温度均不符合人员疏散要求;呼吸区侧送补风可以将疏散通道内的CO浓度控制在62 mg/m3以下,但补风与烟气产生了掺混,使疏散通道内的平均温度达到了227 ℃ ,不满足人员安全疏散的要求;下送补风疏散通道内平均温度高于300 ℃,CO的平均浓度为100 mg/m3,均高于人员安全疏散参数的要求。呼吸区侧送与底部送风相结合补风时,当呼吸区侧送与底部送风量比例为6:1,侧送风速和下送风风速分别为1.8 m/s和0.3 m/s时,疏散通道CO浓度为34.6 mg/m3、温度为59.2 ℃、能见度为18.6 m,均达到了人员安全疏散的标准。呼吸区侧送与底部送风的组合补风方式可有效控制地铁隧道疏散通道内的火灾烟气,为以保障人员安全为目的的地下空间精准补风设计提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷文君
郭丽丽
赵旭明
邰传民
齐悦
关键词:  呼吸区侧送补风  底部送风  地铁隧道火灾  烟气控制  疏散行为    
Abstract: To address the issues of excessive air volume and insufficient targeting effectiveness in traditional subway tunnel make-up air systems, a novel composite ventilation method was proposed. This approach integrated side-supply in the breathing zone with bottom-supply ventilation based on occupant evacuation behavior patterns, with the objective of investigating its effectiveness in controlling smoke dispersion in evacuation passages.A physical model of a metro tunnel section was constructed using numerical simulation. Comparative analysis was conducted on the distribution patterns of CO concentration, temperature, and visibility in evacuation pathways under four distinct ventilation conditions: natural air replenishment, breathing-zone lateral air supply, bottom air supply, and combined ventilation modes.The study found that natural make-up air had the worst effect on controlling fire smoke in the evacuation channel, with visibility, CO concentration, and temperature all failing to meet personnel evacuation requirements.Breathing zone side-feeding make-up air could control the CO concentration in the evacuation channel below 62 mg/m3, but the mixing of make-up air and smoke caused the average temperature in the evacuation channel to reach 227 °C, which did not satisfy the requirements for safe personnel evacuation.For bottom make-up air, the average temperature in the evacuation channel exceeded 300 °C, and the average CO concentration was 100 mg/m3, both higher than the safety parameters required for personnel evacuation.When the combined make-up air of breathing zone side-feeding and bottom-feeding was applied, with the air volume ratio of side-feeding to bottom-feeding being 6:1 and the corresponding wind speeds being 1.8 m/s and 0.3 m/s respectively, the CO concentration in the evacuation channel was 34.6 mg/m3, the temperature was 59.2 °C, and the visibility was 18.6 m—all meeting the standards for safe personnel evacuation.The combined make-up air method of side-feeding in the breathing zone and bottom-feeding can effectively control fire smoke in metro tunnel evacuation channels, providing a theoretical basis for precise make-up air design in underground spaces aimed at ensuring personnel safety.
Key words:  breathing zone makeup air supplementation    underfloor makeup air supplementation    subway tunnel fire    smoke control    evacuation behavior
收稿日期:  2025-01-03      修回日期:  2025-03-05      发布日期:  2025-06-03     
中图分类号:  TU9  
基金资助: 国家自然科学基金资助项目(NO.51908333);山东省自然科学基金资助项目(ZR2024ME166);山东省高等学校青年创新团队发展计划(鲁教[2021]51号)
作者简介:  雷文君(1986—),女,山东德州人,副教授,硕士生导师,博士,主要研究方向为火灾通风排烟与人员疏散。E-mail: leiwenjun@sdjzu.edu.cn
引用本文:    
雷文君, 郭丽丽, 赵旭明, 邰传民, 齐悦. 补风方式对地铁隧道火灾烟气控制效果的研究[J]. 隧道与地下工程灾害防治, .
LEI Wenjun, GUO Lili, ZHAO Xuming, TAI Chuanmin, QI Yue. Study on the effect of makeup air supplementation on fire smoke control in subway tunnel. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-14.
链接本文:  
[1] 李炎锋,苏枳赫. 地铁区间隧道火灾热环境演化与疏散安全研究综述[J]. 隧道与地下工程灾害防治, 2024, 6(2): 1-12.
[2] 王明年,于丽,李琦,王旭. 高速铁路隧道防灾疏散救援技术研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(2): 13-23.
[1] ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47 -56 .
[2] WANG Lichuan , HE Weiguo, ZHANG Junru , WU Hongbin , JIANG Xinqiang , ZHANG Huijian , WANG Wen , HUANG Linxiang. Application of the steel pipe pile arch cover method in large-span underground metro stations in weak and fragmented rock strata[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -14 .
[3] Gou Xiaojun, Zhao Jinquan, Ji Wei, Hua Xiaoming, fan zhanfeng. Numerical simulation of radar characteristics of adverse geological structures in tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -19 .
[4] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[5] LI Lianran, REN Zhouhong, WANG Bin, ZHANG Quan, HUANG Hao, LIU Jijin, XU Haoyu, GUO Qian. Inverse wavefield transform method for opposing coils transient electromagnetic data and its application in ahead prospecting in the  lead-zinc mine at Huize[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -20 .
[6] WEI Songyuan, MA Jingyi, PENG Zhenhua, LIU Jianli, LI Wei. Reliability analysis of surrounding rocks stability of underground water-sealed caverns[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -3 .
[7] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 1 -10 .
[8] XIAO Peiwei, YANG Xingguo, QIAN Hongjian, WANG Haofan, LI Biao, XU Nuwen. The best supporting time of hydraulic tunnels based on multiple monitoring information[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 11 -21 .
[9] DING Jianqi, WANG Chencheng, ZHU Xiangshan, ZHANG Xiang, FU Gang, XU Jingmin. Influence mechanism of large diameter tunnel construction on adjacent buildings[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 22 -34 .
[10] WU Jiangtao, LI Yingjie. The lightweight object detection algorithm for obstacles in tunnel construction environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 48 -56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn