Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于掘进参数与岩渣特征的TBM隧道围岩可掘性分析
刘德卫
(四川蜀道新制式轨道集团有限责任公司,成都 610023)
TBM tunnel surrounding rock excavability analysis based on excavation parameters and muck characteristics
LIU Dewei
(Sichuan Shudao New Mode Rail Transit Group Co., Ltd., Chengdu 610023, Sichuan, China)
下载:  PDF (2455KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高TBM隧道工程大型机械精细化施工水平,根据掘进参数和岩渣特征,对TBM可掘性分级方法进行研究。以四川西部某隧道TBM施工段为依托,掘进参数、岩渣为研究对象,通过冗余数据删除、变点检测与条件筛选、基于箱型图方法的数据去异、平滑滤波等对TBM掘进参数时序数据进行预处理,选择各掘进循环总推力均值、刀盘扭矩均值、贯入度均值为聚类参数,根据轮廓系数、BIC((Bayesian information criterion)和肘部法则,确定聚类数目为4;基于GMM(Gaussian mixture model)无监督算法对各掘进循环参数样本进行聚类,结合岩渣形态特征和现场地质调查结果建立TBM可掘性划分方法。对聚类结果进行子样本抽样与外部验证法双重验证,结果表明分类一致性较高,证明了聚类结果的稳健性和可掘性划分方法的有效性。该研究将为TBM施工提供数据驱动的可掘性评估方法,提升设计指导性与施工适应性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘德卫
关键词:  掘进参数  TBM可掘性  GMM  岩渣    
Abstract: To enhance the precision and efficiency of mechanized tunneling in TBM projects, this research investigated a boreability classification method based on tunneling parameters and muck characteristics. Based on a TBM construction section of a tunnel in western Sichuan, tunneling parameters and muck samples were employed as the primary research objects. The time-series data of TBM tunneling parameters were preprocessed using techniques including redundant data elimination, change-point detection and conditional filtering, outlier removal based on boxplot analysis, and smoothing filters. The average total thrust, average cutterhead torque, and average penetration rate per excavation cycle were selected as clustering variables. By employing the silhouette coefficient, BIC, and the elbow method, the optimal number of clusters was determined to be four. Subsequently, a Gaussian Mixture Model (GMM) unsupervised clustering algorithm was applied to classify the tunneling cycles. A boreability classification method was then established by integrating the clustering results with muck morphology characteristics and field geological surveys. The clustering results were validated through subsampling validation and external validation, both of which confirmed a high level of consistency. These findings demonstrated the robustness of the clustering outcomes and the effectiveness of the proposed boreability classification method. This research provides a data-driven method for TBM boreability assessment, offering enhanced guidance for design and improved adaptability in construction.
Key words:  boring parameters    TBM boreability    GMM    muck
收稿日期:  2025-08-04      修回日期:  2025-11-30      发布日期:  2025-12-26     
中图分类号:  U25  
  TU457  
基金资助: 川西地区复杂地质山地轨道交通隧道TBM施工关键技术资助项目(2022-DSZQ-007)
作者简介:  刘德卫(1971—),男,四川广元人,高级工程师,主要研究方向为高速公路建设和管理、山地轨道交通工程。E-mail:727747733@qq.com
引用本文:    
刘德卫. 基于掘进参数与岩渣特征的TBM隧道围岩可掘性分析[J]. 隧道与地下工程灾害防治, .
LIU Dewei. TBM tunnel surrounding rock excavability analysis based on excavation parameters and muck characteristics. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-9.
链接本文:  
[1] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn