Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (3): 1-8    
  高端论坛 本期目录 | 过刊浏览 | 高级检索 |
含脱空、腐蚀病害地下管道高聚物注浆修复试验与数值研究
王复明1,2,3,李斌1,2,3,方宏远1,2,3*
1. 郑州大学水利科学与工程学院, 河南 郑州 450001;2. 重大基础设施检测修复技术国家地方联合工程实验室, 河南 郑州 450001;3. 水利与交通基础设施安全防护河南省协同创新中心, 河南 郑州 450001
Experimental and numerical study on polymer grouting repair of underground pipeline with void and corrosion diseases
WANG Fuming1,2,3, LI Bin1,2,3, FANG Hongyuan1,2,3*
1. School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China;2. National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou 450001, Henan, China;
3. Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou 450001, Henan, China
下载:  PDF (10516KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以含密实管基、脱空管基和高聚物修复管基的腐蚀排水管道为研究对象,针对不同车辆轴载下3种不同管基状态的腐蚀管道开展现场足尺试验。根据现场试验分别建立含密实、脱空和高聚物修复管基的腐蚀排水管道精细化三维有限元模型,对试验结果的可靠性进行验证。研究结果表明:实测数据和模拟结果吻合度较高,最大误差仅为10.9%;车辆轴载质量从15 t增加到20 t和25 t时,脱空管道承插口管顶内壁应变相对于密实管道分别增加了62%、54%、38%和36%、14%、11%,说明管底脱空可显著改变管道的受力状态;密实和修复管道承插口内外壁环向应变十分接近,表明高聚物注浆预处理技术修复管底脱空效果显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王复明
李斌
方宏远
关键词:  排水管道  脱空  腐蚀  高聚物注浆  足尺试验  有限元模型    
Abstract: The corrosion drainage pipes with dense pipe bedding, void pipe bedding and polymer repaired pipe bedding were taken as the research object, and the field full-scale test was carried out for corrosion pipes with three different pipe bedding states under different vehicle axle loads. According to the field test, the refined three-dimensional finite element models of corroded drainage pipes with dense, void and polymer repaired pipe beddings were established, respectively, and the reliability of the test results was verified. The results showed that the measured data were in good agreement with the simulation results, and the maximum error was only 10.9%. When the vehicle axle load increased from 15 t to 20 t and 25 t, the strains on the inner wall of the bell and spigot crown of the void pipe were increased by 62%, 54%, 38% and 36%, 14% and 11%, respectively, compared with that of the dense pipe, which indicated that the void pipe bedding could significantly change the stress state of the pipe. The circumferential strains on the inner and outer walls of the bell and spigot of the dense pipe were very close to the repaired pipe, which indicated that the polymer grouting pretreatment technology had a significant effect on repairing the void pipe bedding.
Key words:  drainage pipes    void    corrosion    polymer grouting    full-scale test    finite element model
收稿日期:  2019-09-23                出版日期:  2019-09-20      发布日期:  2019-11-13      期的出版日期:  2019-09-20
中图分类号:  TU990.3  
基金资助: 国家重点研发计划资助项目(2016YFC0802400);国家自然科学基金资助项目(51978630,51678536);河南省重大科技专项资助项目(171100310100);河南省教育厅高校科技创新人才计划资助项目(19HASTIT043);郑州大学优秀青年人才科研基金资助项目(1621323001);河南省高校科技创新团队支持计划资助项目(18IRTSTHN007)
通讯作者:  方宏远(1982— ),男,河南郑州人,博士,教授,博士生导师,主要研究方向为岩土工程无损检测与快速修复技术研究. E-mail: 18337192244@163.com   
作者简介:  王复明. E-mail:fuming573@126.com. *通信作者:方宏远(1982— ),男,河南郑州人,博士,教授,博士生导师,主要研究方向为岩土工程无损检测与快速修复技术研究. E-mail: 18337192244@163.com
引用本文:    
王复明,李斌,方宏远. 含脱空、腐蚀病害地下管道高聚物注浆修复试验与数值研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 1-8.
WANG Fuming, LI Bin, FANG Hongyuan. Experimental and numerical study on polymer grouting repair of underground pipeline with void and corrosion diseases. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 1-8.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I3/1
[1] AHMAD, HAYAT. Live insertion method to install PE mains[J]. Pipe Line Industry Houston, 1989, 71(3): 45-46.
[2] ZHAO T, TIAN Z. New tool for internal pressure during fabrication and installation of mechanically lined pipelines using reel-lay method[J]. Applied Ocean Research, 2016, 58: 232-240.
[3] KULICZKOWSKI A, KUBICKA U, PARKA A. The comparative analysis of standards used in Poland for trenchless rehabilitation of sewage pipes and the problems in design of resin liners[J]. Tunnelling and Underground Space Technology, 2010, 25(6): 795-801.
[4] DAS S, BAYAT A, GAY L, et al. A comprehensive review on the challenges of cured-in-place pipe(CIPP)installations[J]. Journal of Water Supply: Research and Technology-Aqua, 2016, 65(8): 583-596.
[5] ALLOUCHE E, ALAM S, SIMICEVIC J, et al. A pilot study for retrospective evaluation of cured-in-place pipe(CIPP)rehabilitation of municipal gravity sewers[J]. Tunnelling and Underground Space Technology, 2014, 39: 82-93.
[6] 中华人民共和国住房和城乡建设部. 城镇排水管道非开挖修复更新工程技术规程:CJJ/TT210—2014[S]. 北京:中国建筑工业出版社, 2014.
[7] CHAPMAN D N, NG P C F, KARRI R. Research needs for on-line pipeline replacement techniques[J]. Tunnelling and Underground Space Technology, 2007, 22(5/6): 503-514.
[8] IHLE C F, TAMBURRINO A. Uncertainties in key transport variables in homogeneous slurry flows in pipelines[J]. Minerals Engineering, 2012, 32: 54-59.
[9] NEL D T, HAARHOFF J. The failure probability of welded steel pipelines in dolomitic areas[J]. Journal of the South African Institution of Civil Engineering, 2011, 53(1):9-21.
[10] SHIMADA H, CHEN Y L, ARAKI K, et al. Experimental and numerical investigations of ground deformation using chemical grouting for pipeline foundation[J]. Geotechnical and Geological Engineering, 2012, 30(2): 289-297.
[11] ZHOU W X. Reliability evaluation of corroding pipelines considering multiple failure modes and time-dependent internal pressure[J]. Journal of Infrastructure Systems, 2011, 17(4): 216-224.
[12] SHI M S, WANG F M, LUO J. Compressive strength of polymer grouting material at different temperatures[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2010, 25(6): 962-965.
[13] 徐建国, 胡会明, 钟燕辉, 等. 地下管道沉降与脱空高聚物注浆修复数值分析[J]. 地下空间与工程学报, 2017, 13(5): 1165-1172. XU Jianguo, HU Huiming, ZHONG Yanhui, et al. Numerical analysis on underground pipe settlement and vacancy repairing with polymer injection[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5): 1165-1172.
[14] FANG H Y, LI B, WANG F M, et al. The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing[J]. Tunnelling and Underground Space Technology, 2018, 74: 185-194.
[15] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[16] 张世杰. 管道橡胶密封圈力学性能试验研究与数值模拟[D]. 郑州: 河南工业大学, 2013. ZHANG Shijie. Experimental research and numerical simulation of the mechanical properties of the pipe rubber seals[D]. Zhengzhou: Henan University of Technology, 2013.
[17] RAKITIN B, XU M. Centrifuge modeling of large-diameter underground pipes subjected to heavy traffic loads[J]. Canadian Geotechnical Journal, 2014, 51(4): 353-368.
[18] XU M, SHEN D W, RAKITIN B. The longitudinal response of buried large-diameter reinforced concrete pipeline with gasketed bell-and-spigot joints subjected to traffic loading[J]. Tunnelling and Underground Space Technology, 2017, 64: 117-132.
[1] 王复明, 李斌, 方宏远. 含脱空、腐蚀病害管道高聚物注浆修复试验与数值研究[J]. 隧道与地下工程灾害防治, 0, (): 1-8.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn