Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (3): 39-45    
  本期目录 | 过刊浏览 | 高级检索 |
复杂地形下山区轨道交通振动传播规律现场测试
丁选明1,2,杨金川1,2,王成龙1,2,杨长卫3
1. 重庆大学土木工程学院, 重庆 400045;2.重庆大学山地城镇建设与新技术教育部重点实验室, 重庆 400045;3. 西南交通大学土木工程学院, 四川 成都 610031
Field tests on attenuation of train induced soil vibration under inclined topography conditions
DING Xuanming1,2, YANG Jinchuan1,2, WANG Chenglong1,2, YANG Changwei3
1. College of Civil Engineering, Chongqing University, Chongqing 400045, China;
2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China;
3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
下载:  PDF (4611KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对复杂地形下轨道交通引起的环境振动问题,采用现场测试的方法,对重庆轻轨6号线经过典型斜坡的高架段进行监测,分析倾斜地层条件下轨道交通振动传播衰减规律。研究结果表明:半凹形场地下地面振动的主要频率为30~95 Hz,地面振动呈波动性衰减,在垂直轨道中心线以及与其成45°方向上均出现两个振动放大区;受场地地形的影响,振动主要聚集在凹形场地内,两个方向振动在凹形场地内衰减并不明显,但衰减规律差异显著;在靠近桥墩附近低频振动较为明显,并且列车运行具有明显周期性加载现象;地面振动主要集中在高频部分,但高频部分衰减并不明显,而低频部分出现了一定的衰减。并且上行列车引起的各频率振动大于下行列车。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁选明
杨金川
王成龙
杨长卫
关键词:  倾斜地层  振动  现场测试  轨道交通  频率    
Abstract: Field tests were carried out to study the vibrations problem induced by moving train traffic under complex topography conditions on the viaduct section of Chongqing Light Rail Line 6 passing through typical slopes. Attenuation of train induced soil vibration under inclined topography conditions were analyzed. The results showed that the main frequencies of ground vibration caused by trains were distributed 30-95 Hz under the semi-concave field, and the ground vibration presented wave attenuation. Two vibration amplification zones appeared in the direction of 45, and 90 degrees from the track center line. Affected by the topography of the site, the vibration was mainly concentrated in the concave field, and the attenuation of vibration in the two directions was not obvious in the concave field, but the attenuations showed significantly different variations. The vibration with a low-frequency was obvious near the pier, and the train operation had obvious periodical loading phenomenon. The ground vibration was mainly concentrated in the high-frequency part, but the attenuation of the high-frequency part was not obvious, while the vibration of the low-frequency part attenuated to some extent. Whats more, the frequency vibration caused by the up train was greater than that of the down train.
Key words:  inclined topography    vibration    field test    rail traffic    frequency
收稿日期:  2019-06-27                出版日期:  2019-09-20      发布日期:  2019-11-13      期的出版日期:  2019-09-20
中图分类号:  U233  
基金资助: 国家自然科学基金资助项目(51622803);中国铁路总公司科技研究开发计划课题资助项目(2017G008-H)
作者简介:  丁选明(1980— ),男,湖南宁乡人,博士,教授,博士生导师,国家优秀青年基金获得者,主要研究方向为土力学与地基基础工程、土动力学与工程振动. E-mail: dxmhhu@163.com
引用本文:    
丁选明, 杨金川, 王成龙, 杨长卫. 复杂地形下山区轨道交通振动传播规律现场测试[J]. 隧道与地下工程灾害防治, 2019, 1(3): 39-45.
DING Xuanming, YANG Jinchuan, WANG Chenglong, YANG Changwei. Field tests on attenuation of train induced soil vibration under inclined topography conditions. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 39-45.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I3/39
[1] 罗忆,胡晶晶,杨宜谦,等.重载列车通过高架桥诱发地面振动传播与衰减规律的现场测试研究[J]. 岩石力学与工程学报, 2018,37(增刊1):3523-3532. LUO Yi, HU Jingjing, YANG Yiqian, et al. Field monitoring of vibration response and attenuation induced by heavy freight trains on viaduct[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Suppl.1):3523-3532.
[2] 王子玉.地铁车辆段环境振动现场试验与仿真分析[D]. 南昌:华东交通大学,2018. WANG Ziyu. Field test and simulation analysis on environmental vibration of metro depot[D]. Nanchang: East China Jiaotong University, 2018.
[3] YASERI A, BAZYAR M H, HATAF N. 3D coupled scaled boundary finite-element/finite-element analysis of ground vibrations induced by underground train movement[J]. Computers and Geotechnics, 2014, 60(1):1-8.
[4] 高广运,李志毅,冯世进,等. 秦-沈铁路列车运行引起的地面振动实测与分析[J]. 岩土力学,2007, 28(9): 1817-1822. GAO Guangyun, LI Zhiyi, FENG Shijin, et al. Experimental results and numerical predictions of ground vibration induced by high-speed train running on Qin-Shen Railway[J]. Rock and Soil Mechanics, 2007, 28(9): 1817-1822.
[5] 陈建国,夏禾,肖军华,等. 列车运行对周围地面振动影响的试验研究[J]. 岩土力学, 2008, 29(11): 3113-3118. CHEN Jianguo, XIA He, XIAO Junhua. Experimental study of ground vibrations induced by moving train[J]. Rock and Soil Mechanics, 2008, 29(11): 3113-3118.
[6] KOUROUSSIS G, VERLINDEN O, CONTI C. Free field vibrations caused by high-speed lines: measurement and time domain simulation[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(4): 692-707.
[7] 李小珍,刘全民,张迅,等.高架轨道交通附近自由地表振动试验研究[J].振动与冲击, 2014, 33(16):56-61. LI Xiaozhen, LIU Quanmin, ZHANG Xun, et al. Ground vibration induced by inter-city express train[J]. Journal of Vibration and Shock, 2014, 33(16):56-61.
[8] 闫维明,聂晗,任珉,等. 地铁交通引起的环境振动的实测与分析[J]. 地震工程与工程振动, 2006, 26(4): 187-191. YAN Weiming, NIE Han, REN Min, et al. In situ experiment and analysis of environmental vibration induced by urban subway transit[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4): 187-191.
[9] 单涛涛,楼梦麟,蒋通,等. 地铁诱发地面振动传播衰减特性分析[J]. 防灾减灾工程学报,2013, 33(4): 461-467. SHAN Taotao, LOU Menglin, JIANG Tong, et al. Analysis on propagation attenuation of subway-induced ground vibrations[J]. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(4): 461-467.
[10] FENG S J, ZHANG X L, WANG L, et al. In situ experimental study on high speed train induced ground vibrations with the ballast-less track[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 195-214.
[11] 刘汉龙,孙广超,孔纲强,等. 无砟轨道X形桩-筏复合地基动土压力分布规律试验研究[J]. 岩土工程学报,2016, 38(11): 1933-1940. LIU Hanlong, SUN Guangchao, KONG Gangqiang, et al. Model tests on distribution law of dynamical soil pressure of ballastless track XCC pile-raft composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1933-1940.
[12] 孔纲强,孙广超,刘汉龙,等. 不同激振频率下现浇X形桩桩-筏复合地基模型试验研究[J]. 岩土力学,2017, 38(5): 1379-1384. KONG Gangqiang, SUN Guangchao, LIU Hanlong, et al. Experimental study of XCC pile-raft composite foundation under different excitation frequencies[J]. Rock and Soil Mechanics, 2017, 38(5): 1379-1384.
[13] 牛婷婷,刘汉龙,丁选明,等. 高铁列车荷载作用下桩网复合地基振动特性模型试验[J]. 岩土力学, 2018, 39(3): 872-880. NIU Tingting, LIU Hanlong, DING Xuanming, et al. Piled embankment model test on vibration characteristics under high-speed train loads[J]. Rock and Soil Mechanics, 2018, 39(3): 872-880.
[14] 孙广超,刘汉龙,孔纲强,等. 振动波型对X形桩桩-筏复合地基动力响应影响的模型试验研究[J]. 岩土工程学报, 2016, 38(6): 1021-1029. SUN Guangchao, LIU Hanlong, KONG Gangqiang, et al. Model tests on effect of vibration waves on dynamic response of XCC pile-raft composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1021-1029.
[15] 边学成,蒋红光,金皖锋,等. 板式轨道-路基相互作用及荷载传递规律的物理模型试验研究[J]. 岩土工程学报,2012, 34(8): 1488-1495. BIAN Xuecheng, JIANG Honguang, JIN Wanfeng, et al. Full-scale model tests on slab track-subgrade interaction and load transfer in track system[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1488-1495.
[16] CHEN R P, ZHAO X, WANG Z, et al. Experimental study on dynamic load magnification factor for ballastless track-subgrade of high-speed railway[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(4): 306-311.
[17] AL SHAER A, DUHAMEL D, SAB K, et al. Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains[J]. Journal of Sound and Vibration, 2008, 316(1/2/3/4/5): 211-233.
[18] SHENG X, JONES C J C, THOMPSON D J. Prediction of ground vibration from trains using the wavenumber finite and boundary element methods[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 575-586.
[19] ALVES COSTA P, CALÇADA R, SILVA CARDOSO A. Track—ground vibrations induced by railway traffic: In-situ measurements and validation of a 2.5D FEM-BEM model[J]. Soil Dynamics and Earthquake Engineering, 2012, 32(1): 111-128.
[20] 郑鑫, 陶夏新, 王福彤, 等. 轨道交通地面振动衰减关系中局部放大现象形成机理研究[J]. 振动与冲击, 2014, 33(3):35-40. ZHENG Xin, TAO Xiaxin, WANG Futong, et al. Mechanism of local amplification in attenuation of ground vibration induced by rail traffic[J]. Journal of Vibration and Shock, 2014, 33(3):35-40.
[21] ZHANG Xun, LI Xiaozhen, SONG Lizhong, et al. Vibrational and acoustical performance of concrete box-section bridges subjected to train wheel-rail excitation: Field test and numerical analysis[J]. Noise Control Engineering Journal, 2016, 64(2): 217-229.
[22] International Organization for Standardization. Mechanical vibration and shock-evaluation of human exposure to whole-body vibration—part1: general requirements. ISO2631/1[S]. [S.l.] :ISO BSI British Standards, 1997.
[23] 邱俊杰.高架轨道交通引起环境振动的实测与评价方法研究[D]. 武汉:武汉理工大学, 2005. QIU Junjie. Practical and evaluation research on the environmental vibration caused by elevated railroad traffic[D]. Wuhan: Wuhan University of Technology, 2005.
[1] 丁选明, 杨金川, 王成龙, 杨长卫. 复杂地形下山区轨道交通振动传播规律现场测试[J]. 隧道与地下工程灾害防治, 0, (): 39-45.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn