Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (3): 116-122    
  本期目录 | 过刊浏览 | 高级检索 |
基于MatDEM的盾构滚刀破岩离散元建模与数值模拟
梁立唯1,刘春1,2*,秦岩1,朱晨光1,邓尚2
1. 南京大学地球科学与工程学院, 江苏 南京 210023;2. 南京大学(苏州)高新技术研究院, 江苏 苏州 215123
Discrete element modeling and numerical simulation of rock breaking by hob based on MatDEM
LIANG Liwei1, LIU Chun1,2*, QIN Yan1, ZHU Chenguang1, DENG Shang2
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China;
2. Nanjing University(Suzhou)High-tech Institute, Suzhou 215123, Jiangsu, China
下载:  PDF (6074KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 滚刀与岩体间的相互作用是TBM技术的核心,数值模拟是研究这一过程的重要手段。基于岩土体离散元软件MatDEM进行二次开发,构建包含50.2万单元的软硬互层岩层模型和盾构滚刀模型,对滚刀破岩过程进行模拟计算,记录并分析模拟中边界及滚刀受力、颗粒连接、能量转化、热量分布等信息。结果表明:硬质岩层内边界及滚刀受力变化明显,刀盘垂向及层面垂向单元受力较大;软质岩层内边界及滚刀受力较小,滚刀受力均匀;硬质岩层内颗粒连接断裂数较软质岩层少,岩体切削量也较小;硬质岩层内系统能量变幅较大,系统能量主要以摩擦热形式存在。MatDEM有效地模拟了滚刀破岩过程,通过修改滚刀形态和岩石性质等,本算例可用于各类工况滚刀破岩研究中,为大规模滚刀破岩数值模拟提供一个新的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁立唯
刘春
秦岩
朱晨光
邓尚
关键词:  滚刀破岩  离散元  MatDEM  能量  复合岩层    
Abstract: The interaction between the hob and the rock mass is the core of TBM technology, and numerical simulation plays an important role in studying this process. In this paper, a hob and a soft-strong inter-bedded rock model was built based on further development of discrete element software MatDEM, which contained 502 thousand particles. By simulating the process of the rock breaking by a hob, as well as recording and analyzing, including boundary and hob force, particle connection, energy conversion, heat distribution and so on. The simulation results showed that, when strong rock breaked, the force of boundary and hob changing obviously, and the particles had greater force in the direction perpendicular to the hob and layer, but when weak rock layer was breaking, the inner boundary and the hob bore less stress, and the force of the hob was uniform; There were a few of broken joints in strong rock layer, and breaking volume of rock mass was small; During this process a lot of frictional heat was produced, and the accumulate of energy in strong rock was larger. MatDEM could simulate rock breaking process by hob effectively. By modifying the shape of hob and parameter of rock, this method could be further used for simulation of large-scale rock breaking by hob in other engineering conditions. It also provided a new way for numerical simulation of large-scale hob breaking rock.
Key words:  rock breaking by hob    discrete element method    MatDEM    energy    composite rock model
收稿日期:  2018-09-17                出版日期:  2019-09-20      发布日期:  2019-11-13      期的出版日期:  2019-09-20
中图分类号:  TU94+1  
基金资助: 国家自然科学基金资助项目(41761134089);江苏省自然科学基金青年资助项目(BK20170393);青岛海洋科学与技术国家实验室开放基金资助项目(QNLM2016ORP0110)
通讯作者:  刘春(1984— ),男,福建顺昌人,博士,副教授,硕士生导师,主要研究方向为计算工程地质. E-mail: chunliu@nju.edu.cn   
作者简介:  梁立唯(1993— ),男,黑龙江大庆人,硕士研究生,主要研究方向为岩土体离散元数值模拟. E-mail:njulw29015@163.com. *通信作者:刘春(1984— ),男,福建顺昌人,博士,副教授,硕士生导师,主要研究方向为计算工程地质. E-mail: chunliu@nju.edu.cn
引用本文:    
梁立唯, 刘春, 秦岩, 朱晨光, 邓尚. 基于MatDEM的盾构滚刀破岩离散元建模与数值模拟[J]. 隧道与地下工程灾害防治, 2019, 1(3): 116-122.
LIANG Liwei, LIU Chun, QIN Yan, ZHU Chenguang, DENG Shang. Discrete element modeling and numerical simulation of rock breaking by hob based on MatDEM. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 116-122.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I3/116
[1] 王岩,梁正召,唐世斌,等.围压下掘进机多滚刀顺次破岩机理数值模拟研究[J].地下空间与工程学报,2015,11(4):859-863. WANG Yan, LIANG Zhengzhao, TANG Shibin, et al. Numerical simulation study on the mechanism of rock breaking by multiple hobs under confining pressure[J]. Journal of Underground Space and Engineering, 2015, 11(4):859-863.
[2] 袁聚云,蒋明镜,廖优斌,等.断面隧道掘进机滚刀破岩尺寸效应离散元分析[J].同济大学学报,2017,45(10):1437-1445. YUAN Juyun, JIANG Mingjing, LIAO Youbin, et al. Discrete element analysis of size effect of broken rock of hobing machine in section tunnel boring machine[J]. Journal of Tongji University, 2017, 45(10):1437-1445.
[3] EVANS I, POMEROY C D. The strength, fracture, and workability of coal: a monograph on basic work on coal winning carried out by the Mining Research Establishment, National Coal Board[J]. Strength Fracture & Workability of Coal, 1966, 91(3-5):9-10.
[4] SANIO H P.Prediction of the performance of disc cutters in anisotropic rock[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1985, 22(3):153-161.
[5] ENTACHER M, LORENZ S, GALLER R.Tunnel boring machine performance prediction with scaled rock cutting tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70:450-459.
[6] 李利平,李术才,赵勇,等.超大断面隧道软弱破碎围岩渐进破坏过程三维地质力学模型试验研究[J].岩石力学与工程学报,2012,31(3):550-560. LI Liping, LI Shucai, ZHAO Yong, et al. Three-dimensional geomechanical model test study on progressive failure process of weak broken surrounding rock in super-large section tunnel[J]. Journal of Rock Mechanics and Engineering, 2012, 31(3):550-560.
[7] 薛亚东,李兴,刁振兴,等. 基于掘进性能的TBM施工围岩综合分级方法[J].岩石力学与工程学报,2018,37(1):3382-3391. XUE Yadong, LI Xing, DIAO Zhenxing, et al. Comprehensive classify-cation method for surrounding rock of TBM construction based on tunneling performance[J]. Journal of Rock Mechanics and Engineering, 2018, 37(1):3382-3391.
[8] 梁正召,于跃,唐世斌,等.刀具破岩机理的细观数值模拟与刀间距优化研究[J].采矿与安全工程学报,2012,29(1):84-89. LIANG Zhengzhao, YU Yue, TANG Shibin, et al. Mesoscopic numerical simulation of tool rock breaking mechanism and optimization of tool distance[J]. Journal of Mining and Safety Engineering, 2012, 29(1):84-89.
[9] 黄宏伟,刘德军,薛亚东,等.基于扩展有限元的隧道衬砌额裂缝开展数值模拟分析[J].岩土工程学报,2013,35(2):266-275. HUANG Hongwei, LIU Dejun, XUE Yadong, et al. Numerical simulation analysis of tunnel lining front crack based on extended finite element[J]. Geotechnical Engineering, 2013, 35(2):266-275.
[10] HUANG H, LECAMPION B, OETOURNAY E. Discrete element modeling of tool-rock interaction I:rock cutting[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(13):1913-1929.
[11] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1980, 30(3):331-336.
[12] QONG Q M, JIAO J J, ZHAO J. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters[J].Tunneling and Underground Space Technology, 2006, 21(1):46-55.
[13] 张魁,夏毅敏,谭青,等. 不同围压条件下TBM刀具破岩模式的数值研究[J]. 岩土工程学报,2010,32(11):1780-1787. ZHANG Kui, XIA Yimin, TAN Qing, et al. Numerical study on rock breaking mode of TBM tool under different confining pressures [J]. Geotechnical Engineering, 2010, 32(11):1780-1787.
[14] 谭青,易念恩,夏毅敏,等. TBM滚刀破岩动态特性与最优刀间距研究[J]. 岩石力学与工程学报, 2012, 31(12): 2453-2464. TAN Qing, YI Nianen, XIA Yimin, et al. Study on rock breaking dynamics and optimal tool spacing of TBM hob [J]. Journal of Rock Mechanics and Engineering, 2012, 31(12): 2453-2464.
[15] 苏利军,孙金山,卢文波,等.基于颗粒流模型的TBM滚刀破岩过程数值模拟研究[J].岩土力学,2009,30(9):2823-2829. SU Lijun, SUN Jinshan, LU Wenbo, et al. Numerical simulation of rock breaking process of TBM hob based on particle flow model [J]. Journal of Geotechnical Mechanics, 2009, 30(9):2823-2829.
[16] 索文斌,刘春,施斌,等.深基坑PCMW工法开挖过程离散元数值模拟分析[J].工程地质学报,2017,25(4):920-925. SUO Wenbin, LIU Chun, SHI Bin, et al. Numerical simulation analysis of excavation process of deep foundation pit PCMW method [J]. Journal of Engineering Geology, 2017, 25(4):920-925.
[17] LIU Chun, XU Qiang, SHI Bin, et al. Mechanical properties and energy conversion of 3d close-packed lattice model for brittle rocks[J]. Computers & Geosciences, 2017, 103:12-20.
[18] 谭青,史余鹏,曾桂英,等.TBM盘形滚刀破岩刀刃应力分布研究[J].铁道科学与工程学报,2017,14(8):1743-1751. TAN Qing, SHI Yupeng, ZENG Guiying, et al. Research on stress distribution of broken rock edge of TBM disc hob[J]. Journal of Railway Science and Engineering, 2017, 14(8):1743-1751.
[19] 谭青,李建芳,夏毅敏,等.盘形滚刀破岩过程的数值研究[J].岩土力学,2013,34(9):2707-2714. TAN Qing, LI Jianfang, XIA Yimin, et al. Numerical study on rock breaking process of disc hob [J]. Journal of Geotechnical Mechanics, 2013, 34(9):2707-2714.
[1] 赵志宏, 郭铁成, 林涛, 陈思聪. 考虑粗糙度影响的裂隙岩体开挖损伤区分布规律[J]. 隧道与地下工程灾害防治, 2019, 1(3): 77-86.
[2] 洪开荣. 高强度高磨蚀地层TBM滚刀破岩与磨损研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 76-85.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn