Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (1): 1-11    DOI: 10.19952/j.cnki.2096-5052.2021.01.01
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于能量原理的上覆饱水砂层隧道突水灾变
仇文革1,2,黄海昀1,闫飞跃1,孙克国1*
1. 西南交通大学交通隧道工程教育部重点实验室, 成都 四川 610031;2.成都天佑智隧科技有限公司, 成都 四川 610031
A disaster with water inrush based on energy theorem in tunnels under saturated sandy stratum
QIU Wenge1,2, HUANG Haiyun1, YAN Feiyue1, SUN Keguo1*
1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;
2. Chengdu Tianyou Tunnelkey Co., Ltd., Chengdu 610031, Sichuan, China
下载:  PDF (15984KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于能量原理对某地铁隧道突水突泥灾变机理进行了分析,深入揭示了大规模(11 679 m3)突水突泥灾害的本质是掌子面围岩失稳,既而导致上覆软弱富水地层的势能转化为动能,并得到瞬间释放。灾害现场调查发现:该地区地质构造特殊,在空间上呈“漏斗型”,且底部应力集中明显;地铁左线隧道恰好穿过“漏斗”底部;隧道上覆软弱强风化凝灰岩层过薄且构造裂隙丰富; “漏斗型”地层为天然“蓄水库”,灾前大量降雨导致上覆7.1 m厚中粗砂层饱和,水头升高且水量增大,势能增加,渗透力增高,围岩软化加剧。根据灾害发生位置隧道围岩条件,服从三度空间理论中的支护困难空间。基于数值模拟分析表明,当采用超前小导管加固时,考虑渗透力时掌子面不能稳定;当采用管棚注浆加固或掌子面前方围岩加固时,即使考虑渗透力,掌子面也可以稳定。综合分析,此次灾害是由于急剧增加的水压力、高围岩压力、渗透力共同作用于裂隙发育及劣化的强风化凝灰岩,导致围岩因强度不足而失稳,平衡被打破,从而饱水砂层的高势能转化为动能形成了大规模的突水突泥。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇文革
黄海昀
闫飞跃
孙克国
关键词:  饱水砂层  浅埋隧道  突水突泥  能量原理  三度空间    
Abstract: The paper aimed to investigate the natural mechanism for this water inrush and mud outburst disaster in certain subway tunnels by energy theorem. The fundamental reason why this disaster was so large(approximately 11 679 m3)was that the equilibrium of the surrounding rock around the tunnel face was broken, and thus the volume of potential energy was transformed into kinetic energy and released instantaneously. Based on the field survey, some reasons were concluded as follows: the geological tectonic profile seemed like a “funnel”, where stress concentration was obvious; the tunnels crossed the bottom of the “funnel”; the weak and thin strongly-weathered tuff with many cracks located on the crown; the “funnel” stratum could collect a large amount of rainwater, and before this disaster, the rainfall resulted in the medium-coarse sand being saturated, so the water-head rose, seepage force increased, and the surrounding rock was weakened. These conditions could be classified into DI space. It could be seen from the numerical simulation that, the tunnel face applied by seepage force was unstable when strengthened by leading injected conduit whereas by taking account of the influences of seepage function, the tunnel face strengthened by steel piles could keep stable. By comprehensively analysis, it could conclude that the natural reasons for this disaster were that the combined effects consisting of increasing water pressure, concentrated stresses, seepage forces, applied to the degrading rocks, and then the potential energy transforming into kinetic energy formed this disaster on a large scale.
Key words:  saturated sandy layer    shallow tunnel    water inrush and mud outburst    energy theorem    three spaces
收稿日期:  2021-01-12      修回日期:  3021-02-28      发布日期:  2021-03-20     
中图分类号:  TU43  
基金资助: 城市典型交通基础设施运维安全关键技术研究(2017YFC0806006);隧道与地下空间围岩稳定性三度空间分布特征研究(51678497);川藏铁路工程建设与科技创新融合管理(71942006)
通讯作者:  孙克国(1981— ),男,山东青岛人,博士,副教授,主要研究方向为隧道工程突水机理与防控、近接施工原理与对策.    E-mail:  sunkeg@126. com
作者简介:  仇文革(1959— ),男,山东烟台人,博士,教授,主要研究方向为隧道寿命全过程力学行为与控制技术.E-mail:qiuwen_qw@163.com.
引用本文:    
仇文革, 黄海昀, 闫飞跃, 孙克国. 基于能量原理的上覆饱水砂层隧道突水灾变[J]. 隧道与地下工程灾害防治, 2021, 3(1): 1-11.
QIU Wenge, HUANG Haiyun, YAN Feiyue, SUN Keguo. A disaster with water inrush based on energy theorem in tunnels under saturated sandy stratum. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 1-11.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I1/1
[1] 洪开荣.我国隧道及地下工程发展现状与展望[J].隧道建设,2015,35(2):95-107. HONG Kairong. State-of-art and prospect of tunnels and underground works in China[J]. Tunnel Construction, 2015, 35(2): 95-107.
[2] 甘鹏路.富水软弱地层浅埋暗挖隧道地层变形规律及预测研究[D].杭州:浙江大学, 2016. GAN Penglu. Research on the rules and prediction of ground deformation induced by tunnelling with shallow tunnelling method under water-rich soft stratum[D].Hangzhou:Zhejiang University, 2016.
[3] 李涛,韩雪峰,黄华,等.深圳富水复合地层地铁隧道暗挖施工引起地表沉降规律的研究[J].现代隧道技术, 2014, 51(2): 76-82. LI Tao, HAN Xuefeng, HUANG Hua, et al. Laws of surface subsidence caused by the excavation of a bored subway tunnel in a water-rich mixed ground in Shenzhen[J]. Modern Tunnelling Technology, 2014, 51(2): 76-82.
[4] 苏秀婷.青岛地铁富水砂层隧道开挖施工风险与变形规律研究[D].青岛:中国海洋大学, 2012. SU Xiuting. Research of tunnel excavation risk and settlement in water-enriched soil layers of Qingdao Metro[D].Qingdao:Ocean University of China, 2012.
[5] 晏启祥,郑代靖,何川,等.富水砂卵石地层地铁盾构施工若干问题及对策[J].地下空间与工程学报,2015,11(3): 713-719. YAN Qixiang, ZHENG Daijing, HE Chuan, et al. Problems and countermeasures of metro shield construction in water-soaked sand and cobble stratum[J].Chinese Journal of Underground Space and Engineering, 2015, 11(3): 713-719.
[6] 张红军.上覆富水砂层隧道开挖面稳定性分析与注浆加固对策研究[D].济南:山东大学,2017. ZHANG Hongjun. Study on tunnel face stability and grouting reinforcement for tunnels overlying water-rich sand stratum[D]. Jinan:Shandong University, 2017.
[7] 张瑾.青岛富水砂层隧道变形机理及其控制对策研究[D].北京:中国矿业大学(北京),2013. ZHANG Jin. Deformation mechanism and its control strategy for water-rich sand stratum in tunnels of Qingdao [D]. Beijing:China University of Mining and Technology-Beijing, 2013.
[8] 朱双厅,沈炜东,刘锦成,等.长沙地铁富水软弱地层盾构下穿京广铁路风险分析与控制研究[J].铁道标准设计, 2014,58(6): 102-107. ZHU Shuangting, SHEN Weidong, LIU Jincheng, et al. Construction risk analysis and control measures for a Changsha Metro's shield tunnel crossing below existing Beijing-Guangzhou Railway in water-rich soft soil stratum [J]. Railway Standard Design, 2014, 58(6):102-107.
[9] 李术才,李晓昭,靖洪文,等.深长隧道突水突泥重大灾害致灾机理及预测预警与控制理论研究进展[J]. 中国基础科学, 2017, 19(3): 27-43. LI Shucai, LI Xiaozhao, JING Hongwen, et al. Research development of catastrophe mechanism and forecast controlling theory of water inrush and mud gushing in deep long tunnel[J]. China Basic Science, 2017, 19(3): 27-43.
[10] 黄鑫,林鹏,许振浩,等.岩溶隧道突水突泥防突评判方法及其工程应用[J].中南大学学报(自然科学版),2018, 49(10): 2533-2544. HUANG Xin, LIN Peng, XU Zhenhao, et al. Prevention structure assessment method against water and mud inrush in Karst tunnels and its application[J]. Journal of Central South University(Science and Technology),2018, 49(10):2533-2544.
[11] 毕焕军.大梁隧道突水突石机理分析及处理措施研究[J].铁道工程学报, 2015, 32(2): 82-85. BI Huanjun. Mechanism analysis and treatments of water and stone inrush in Daliang Tunnel[J]. Journal of Railway Engineering Society, 2015, 32(2): 82-85.
[12] 金磊,曾亚武,程涛,等.隧道突泥破坏的耦合格子Boltzmann-离散元法模拟[J/OL].岩土工程学报.[2021-01-27]. https://kns.cnki.net/kns8/defaultresult/index. JIN Lei, ZENG Yawu, CHENG Tao, et al. Numerical simulation of tunnel mud inrush with the coupled LBM-DEM[J/OL].Chinese Journal of Geotechnical Engineering.[2021-01-27]. https://kns.cnki.net/kns8/defaultresult/index.
[13] 刘金泉,杨典森,陈卫忠,等.全风化花岗岩突水通道扩展的颗粒起动流速研究[J].岩土力学,2017,38(4): 1179-1187. LIU Jinquan, YANG Diansen, CHEN Weizhong, et al.Research on particle starting velocity in the expansion of water inrush channel in completely weathered granite[J]. Rock and Soil Mechanics, 2017, 38(4): 1179-1187.
[14] 毛邦燕,张广泽,唐兵,等.沪昆客专岗乌隧道1#横洞突水机制分析[J]. 铁道工程学报, 2016, 33(6): 83-87. MAO Bangyan, ZHANG Guangze, TANG Bing, et al. Analysis of mechanism of water-inrush of the 1# transverse of Gangwu Tunnel in the Shanghai-Kunming Passenger Special Line[J]. Journal of Railway Engineering Society, 2016, 33(6): 83-87.
[15] 袁永才,李术才,李利平,等.尚家湾强岩溶隧道突水突泥伴生灾害源综合分析[J].中南大学学报(自然科学版), 2017, 48(1): 203-211. YUAN Yongcai, LI Shucai, LI Liping, et al. Comprehensive analysis on disaster associated by water inrush and mud gushing in Shangjiawan Karst Tunnel[J]. Journal of Central South University(Science and Technology), 2017, 48(1): 203-211.
[16] 张会刚, 张广泽, 毛邦燕. 沪昆客专小高山隧道突水突泥及致灾原因探析[J].铁道工程学报,2016,33(8): 66-70. ZHANG Huigang, ZHANG Guangze, MAO Bangyan. Mechanism analysis and water and mud breakout in the Xiaogao Mountain Tunnel in Shanghai-Kunming Passenger Dedicated Railway[J]. Journal of Railway Engineering Society, 2016, 33(8): 66-70.
[17] 张民庆,何志军,黄鸿健,等.兰新二线大梁隧道突水突泥原因分析与治理[J].铁道工程学报,2015, 32(3): 77-80. ZHANG Minqing, HE Zhijun, HUANG Hongjian, et al.Causal analysis and governance of the water & mud bursting in Daliang Tunnel on Lanzhou-Xinjiang Second Railway[J]. Journal of Railway Engineering Society, 2015, 32(3): 77-80.
[18] 张庆艳, 陈卫忠, 袁敬强,等.断层破碎带突水突泥演化特征试验研究[J].岩土力学,2020,41(6): 1911-1922. ZHANG Qingyan, CHEN Weizhong, YUAN Jingqiang, et al.Experimental study on evolution characteristics of water and mud inrush in fault fractured zone[J].Rock and Soil Mechanics, 2020, 41(6): 1911-1922.
[19] 张民庆, 高扬. 隧道深埋富水滑动型软弱带突水突泥处理技术[J]. 铁道工程学报, 2015, 32(11): 102-106. ZHANG Minqing, GAO Yang. Treatment technology for water and mud bursting of deep water rich sliding type weak zone on tunnel [J]. Journal of Railway Engineering Society, 2015, 32(11): 102-106.
[20] 张民庆,黄鸿健,张生学,等.宜万铁路马鹿箐隧道1·21突水突泥抢险治理技术[J].铁道工程学报,2008(11): 49-56. ZHANG Minqing, HUANG Hongjian, ZHANG Shengxue,et al.Treatment technology for water and mud bursting on 1·21 in Maluqing Tunnel of Yichang-Wanzhou Railway[J]. Journal of Railway Engineering Society, 2008(11): 49-56.
[21] 张民庆,汪纲领,孙国庆.南广铁路白云隧道断层突泥灾害治理技术[J].铁道工程学报, 2012, 29(3): 69-73. ZHANG Minqing, WANG Gangling, SUN Guoqing. Treatment technology for mud bursting of Baiyun Tunnel of Nanning-Guangzhou Railway in fault [J]. Journal of Railway Engineering Society, 2012, 29(3): 69-73.
[22] 王光辉, 蔡军峰. 泥水平衡盾构泥浆漏斗黏度分析[J]. 隧道建设, 2008, 28(6): 646-649. WANG Guanghui, CAI Junfeng. Analysis on funnel viscosity of slurry used in slurry balanced shield machines [J]. Tunnel Construction, 2008, 28(6): 646-649.
[23] 仇文革,孙克国,王立川,等.基于围岩稳定性的大断面隧道初期支护优化[J].土木工程学报,2017,50(增刊2): 8-13. QIU Wenge, SUN Keguo, WANG Lichuan, et al. Primary support optimization of large section tunnel based on surrounding rock stability[J]. China Civil Engineering Journal, 2017, 50(Suppl.2): 8-13.
[1] 王雪雅, 张一鸣. 裂面优化法稳定性分析——强度折减VS超重力[J]. 隧道与地下工程灾害防治, 2021, 3(3): 94-99.
[2] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn