Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (2): 90-97    DOI: 10.19952/j.cnki.2096-5052.2022.02.11
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
海底隧道注浆水泥-水玻璃浆液黏度时变特性
胡瑶瑶1,王凯2,马川义2,何灵垚3*,李鹏3,熊俊成3,王成乾3
1.山东省交通规划设计院集团有限公司, 山东 济南 250101;2.山东高速集团有限公司, 山东 济南 250098;3.中国海洋大学工程学院, 山东 青岛 266100
The time-varying characteristics of viscosity of cement and sodium silicate grout in submarine tunnel
HU Yaoyao1, WANG Kai2, MA Chuanyi2, HE Lingyao3*, LI Peng3, XIONG Juncheng3, WANG Chengqian3
1. Shandong Provincial Comsmunications Planning and Design Institute Group Co., Ltd., Jinan 250101, Shandong, China;
2. Shandong Hi-Speed Group Co., Ltd., Jinan 250098, Shandong, China;
3. Engineering College, Ocean University of China, Qingdao 266100, Shandong, China
下载:  PDF (5858KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究海水环境对于水泥-水玻璃浆液黏度的影响,采用室内试验方法,重点测试水泥-水玻璃(C-S)浆液不同水灰比、C-S体积比、浆液环境(淡水与海水)下浆液黏度的时变特性。结果表明,淡水环境下,C-S浆液黏度变化可划分为初始期与上升期;海水环境下,浆液的黏度变化分为初始期、稳定期与上升期三个阶段。水灰比与C-S体积比直接影响浆液各个阶段的持续时间与黏度;海水环境的复杂离子成分使得浆液黏度在短时间内上升到一定水平后进入黏度稳定期。基于试验结果提出对于海底隧道不良地质体注浆施工的指导建议,研究结论对于保障海底隧道安全建设具有一定的推动意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡瑶瑶
王凯
马川义
何灵垚
李鹏
熊俊成
王成乾
关键词:  海底隧道  海水环境  注浆技术  水泥-水玻璃浆液  时变黏度    
Abstract: For the purpose of researching the influence of seawater environment on the viscosity of cement sodium silicate(C-S)grout, the study tested the time-varying characteristics of grout viscosity under different water-cement(W-C)ratio, C-S volume ratio and grouting conditions(fresh water and seawater)by laboratory test method. The results showed that the viscosity of C-S grout could be divided into initial stage and rising stage under fresh water environment. In seawater environment, grout viscosity could be divided into three stages: initial stage, stable stage and rising stage. W-C ratio and C-S ratio directly affected the duration and viscosity of grout in each stage. Due to the complex ionic composition of seawater environment, the viscosity of grout rose to a certain level in a short period of time before entering a stable period of viscosity. Based on the test results, some suggestions were put forward for the construction of grouting in the unfavorable geological body of submarine tunnel, and the research conclusions had certain promoting significance for the safety construction of submarine tunnel.
Key words:  subsea tunnel    seawater environment    grouting technology    C-S grout    viscosity time-varying
收稿日期:  2022-04-12      修回日期:  2022-06-01      发布日期:  2022-06-20     
中图分类号:  U454  
基金资助: 国家自然科学基金青年基金资助项目(51909250);山东省自然科学基金资助项目(ZR2019BEE003)
通讯作者:  何灵垚(1998— ),男,河南商城人,硕士研究生,主要研究方向为海底隧道注浆.    E-mail:  helingyao@stu.ouc.edu.cn
作者简介:  胡瑶瑶(1989— ),女,山东诸城人,硕士,工程师,主要研究方向为隧道设计. E-mail:oxymoron@126.com.
引用本文:    
胡瑶瑶, 王凯, 马川义, 何灵垚, 李鹏, 熊俊成, 王成乾. 海底隧道注浆水泥-水玻璃浆液黏度时变特性[J]. 隧道与地下工程灾害防治, 2022, 4(2): 90-97.
HU Yaoyao, WANG Kai, MA Chuanyi, HE Lingyao, LI Peng, XIONG Juncheng, WANG Chengqian. The time-varying characteristics of viscosity of cement and sodium silicate grout in submarine tunnel. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 90-97.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I2/90
[1] 张家奇, 李术才, 张霄, 等. 土石分层介质注浆扩散的试验研究[J]. 浙江大学学报(工学版), 2018, 52(5): 914-924. ZHANG Jiaqi, LI Shucai, ZHANG Xiao, et al. Model test on grouting diffusion in rock and soil layered medium[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(5): 914-924.
[2] 王丹. 海底隧道含水断层涌水量分析及突水风险预测方法研究[D]. 济南: 山东大学, 2017. WANG Dan. Study of analysis of water inflow and risk prediction method of water inrush from water bearing faults in subsea tunnel[D]. Jinan: Shandong University, 2017.
[3] 李永宽. 青岛胶州湾海底隧道穿越断层破碎带关键技术研究[D]. 北京: 北京交通大学, 2017. LI Yongkuan. Key technology study on Qingdao Jiaozhou Bay subsea tunnel crossing seabed fault zone[D]. Beijing: Beijing Jiaotong University, 2017.
[4] 周勇, 李召峰, 左志武, 等. 桩侧注浆提升粉质黏土地层既有桩基承载力试验研究[J]. 隧道与地下工程灾害防治, 2022, 4(1): 38-47. ZHOU Yong, LI Zhaofeng, ZUO Zhiwu, et al. Experimental study of the bearing capacity of existing pile foundation in silty clay stratum promoted by pile side grouting[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 38-47.
[5] 周书明, 潘国栋. 水下隧道风险分析与控制[J]. 地下空间与工程学报, 2012, 8(增刊2):1828-1831. ZHOU Shuming, PAN Guodong. Risk analysis and control on construction of underwater tunnel[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(Suppl.2): 1828-1831.
[6] 王密田, 王迎超, 王楠, 等. 降雨条件下断层隧道突水灾变演化规律[J]. 隧道与地下工程灾害防治, 2021, 3(4): 40-52. WANG Mitian, WANG Yingchao, WANG Nan, et al. Evolution law of water inrush disaster in fault tunnel under rainfall condition[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(4): 40-52.
[7] 张玉. 水泥基注浆材料浆液扩散规律和预测控制试验研究[D]. 北京: 北京交通大学, 2020. ZHANG Yu. Experimental research on law and prediction-control of slurry diffusion using cement-based grouting material[D]. Beijing: Beijing Jiaotong University, 2020.
[8] KUMAR SULUGURU A, JAYATHEJA M, KAR A, et al. Experimental studies on the microstructural, physical and chemical characteristics of building derived materials to assess their suitability in ground improvement[J]. Construction and Building Materials, 2017, 156: 921-932.
[9] ZHOU Z L, DU X M, WANG S Y, et al. Analysis and engineering application investigation of multiple-hole grouting injections into porous media considering filtration effects[J]. Construction and Building Materials, 2018, 186: 871-883.
[10] ZOU J F, CHEN K F, PAN Q J. An improved numerical approach in surrounding rock incorporating rockbolt effectiveness and seepage force[J]. Acta Geotechnica, 2018, 13(3): 707-727.
[11] PANAH A K, YANAGISAWA E. Laboratory studies on hydraulic fracturing criteria in soil[J]. Soils and Foundations, 1989, 29(4): 14-22.
[12] BEZUIJEN A, TE GROTENHUIS R, VAN TOL A F, et al. Analytical model for fracture grouting in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(6): 611-620.
[13] 张连震, 张庆松, 刘人太, 等. 考虑浆液黏度时空变化的速凝浆液渗透注浆扩散机制研究[J]. 岩土力学, 2017, 38(2): 443-452. ZHANG Lianzhen, ZHANG Qingsong, LIU Rentai, et al. Penetration grouting mechanism of quick setting slurry considering spatiotemporal variation of viscosity[J]. Rock and Soil Mechanics, 2017, 38(2): 443-452.
[14] CUI W, TANG Q W, SONG H F. Washout resistance evaluation of fast-setting cement-based grouts considering time-varying viscosity using CFD simulation[J]. Construction and Building Materials, 2020, 242: 117959.
[15] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 通用硅酸盐水泥: GB 175—2007[S]. 北京: 中国标准出版社, 2008.
[16] 熊俊成, 郑春雨, 刘勇, 等. 海水环境下水泥浆液粘度时变特性试验研究[J]. 硅酸盐通报, 2020, 39(7): 2059-2064. XIONG Juncheng, ZHENG Chunyu, LIU Yong, et al. Experimental study on time-dependent properties of viscosity of cement slurry in seawater environment[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2059-2064.
[17] 袁敬强, 陈卫忠, 于建新, 等. 静水条件下浆液粘度时变特性与微观结构研究[J]. 地下空间与工程学报, 2016, 12(5): 1264-1270. YUAN Jingqiang, CHEN Weizhong, YU Jianxin, et al. Micro-structure and time-varying characteristic of cement-sodium silicate grout under still water[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(5): 1264-1270.
[18] 朱哲誉, 王中平, 周玥, 等. 硅酸盐水泥水化产物微纳结构的原位研究[J]. 硅酸盐学报, 2021, 49(8): 1699-1705. ZHU Zheyu, WANG Zhongping, ZHOU Yue, et al. In-situ study on micro-nano structure of Portland cement hydration products[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1699-1705.
[19] 王红喜. 高性能水玻璃悬浊型双液灌浆材料研究与应用[D]. 武汉: 武汉理工大学, 2007. WANG Hongxi. Research on high performance sodium-silicate suspension two-shot grouting materials and its application[D]. Wuhan: Wuhan University of Technology, 2007.
[20] 宋瑞霞, 赵永虎, 米维军, 等. 帷幕注浆在富水大跨度黄土隧道中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(2): 43-48. SONG Ruixia, ZHAO Yonghu, MI Weijun, et al. Application of curtain grouting in watery and large-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 43-48.
[21] 刘奇, 陈卫忠, 袁敬强, 等. 岩溶充填黏土注浆加固试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3179-3188. LIU Qi, CHEN Weizhong, YUAN Jingqiang, et al. Laboratory experiment study of grouted materials filled in Karst Caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Suppl.1): 3179-3188.
[1] 谭忠盛. 隧道与地下工程建设理念及关键技术——记王梦恕院士的主要学术思想和科研成就[J]. 隧道与地下工程灾害防治, 2019, 1(2): 1-6.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn