Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (3): 107-114    DOI: 10.19952/j.cnki.2096-5052.2022.03.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
饱和粉砂地层中联络通道冻结法在水流-盐分共同作用下的施工监测方法
龙道选1,王凯1,何红员1,张海东2*,王长虹2
1.中铁隧道集团三处有限公司, 广东 深圳 518000;2.上海大学土木工程系, 上海 200444
Construction monitoring method of connecting passage freezing method in saturated silt formation under the combined action of water flow and salt
LONG Daoxuan1, WANG Kai1, HE Hongyuan1, ZHANG Haidong2*, WANG Changhong2
1. The 3rd Engineering Co., Ltd., China Railway Tunnel Group, Shenzhen 518000, Guangdong, China;
2. Department of Civil Engineering, Shanghai University, Shanghai 200444, China
下载:  PDF (5300KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以南通城市轨道交通1号线4#联络通道为工程背景,通过监测数据研究冻结施工过程的多场耦合变化规律。研发了一套新型多物理场数据监测设备,介绍了监测工作的内容与流程。最后,分析监测数据,并与模拟结果对比。结果表明:考虑到饱和粉砂地层中含有盐分与微水流,盐分使地层在冻结前期温度下降过慢,微水流导致上游深南路站的制冷量流入下游永兴大道站,进而造成实际冻结施工所需时间比预期延迟了10 d。上述监测工作保证了联络通道冻结法施工的安全,并为其它类似工程提供参考数据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙道选
王凯
何红员
张海东
王长虹
关键词:  冻结法  联络通道  盐分  微水流  监测管    
Abstract: Based on the engineering background of 4# connecting passage of Nantong Urban Rail Transit Line 1, the multi-field coupling variation law of freezing construction process was studied through monitoring data. A new multi-physical field data monitoring equipment was developed, and its basic characteristics and installation location were introduced. Finally, the monitoring data were analyzed and compared with the simulation results. The results showed that considering the dual influences of salinity and water flow in the saturated silty sand layer, the salinity slowed down the temperature of the soil in the early freezing stage, and the water flow caused the cooling capacity of the upstream Shennan Road Station to flow into the downstream Yongxing Avenue Station, which in turn delayed the actual freezing construction time by 10 days than expected. The above monitoring work ensures the safety of the construction of the connection aisle freezing method and provides reference data for other similar projects.
Key words:  freezing method    connecting passage    saline soil    micro water flow    monitoring tube
收稿日期:  2021-10-22      修回日期:  2022-01-04      发布日期:  2022-09-20     
中图分类号:  TU94  
通讯作者:  张海东(1998— ),男,湖北襄阳人,硕士研究生,主要研究方向为物理场耦合分析.    E-mail:  hd_zhang1@163.com
作者简介:  龙道选(1985— ),男,湖南邵阳人,工程师,主要研究方向为盾构技术管理. E-mail:276775847@qq.com.
引用本文:    
龙道选, 王凯, 何红员, 张海东, 王长虹. 饱和粉砂地层中联络通道冻结法在水流-盐分共同作用下的施工监测方法[J]. 隧道与地下工程灾害防治, 2022, 4(3): 107-114.
LONG Daoxuan, WANG Kai, HE Hongyuan, ZHANG Haidong, WANG Changhong. Construction monitoring method of connecting passage freezing method in saturated silt formation under the combined action of water flow and salt. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 107-114.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I3/107
[1] 李大勇, 王晖, 张庆贺. 南京地铁联络通道冻结法施工措施分析[J]. 岩土力学, 2003(增刊2): 365-368. LI Dayong, WANG Hui, ZHANG Qinghe. Measures analysis of freezing method applied to connected aisle in Nanjing metro tunnel[J]. Rock and Soil Mechanics, 2003(Suppl.2): 365-368.
[2] 褚兰晢, 唐旭军, 李军辉. 氯盐环境下开裂混凝土内钢筋锈蚀速率的理论模型研究[J]. 江苏建筑, 2019(增刊2): 71-75. CHU Lanzhe, TANG Xujun, LI Junhui. Theoretical model of corrosion rate of steel in cracked concrete exposed to chloride environment[J]. Jiangsu Construction, 2019(Suppl.2): 71-75.
[3] 王峻, 田倩, 李明. 太湖隧道主体结构混凝土自防水关键技术[J]. 江苏建筑, 2020(5): 8-12. WANG Jun, TIAN Qian, LI Ming. Key technology of self-waterproofing concrete for the main structure of Taihu lake tunnel[J]. Jiangsu Construction, 2020(5): 8-12.
[4] 杨睿, 王育江, 徐文, 等. 隧道二次衬砌结构温度裂缝预测及开裂风险影响因素的数值模拟分析[J]. 江苏建筑, 2020(5): 32-35. YANG Rui, WANG Yujiang, XU Wen, et al. Numerical simulation analysis on temperature crack causes and influence factors of the cracking risk of the tunnel secondary lining structure[J]. Jiangsu Construction, 2020(5): 32-35.
[5] 张雷, 张玉声. 浅谈某工程地铁盾构施工对临近基坑的影响以及处理[J]. 江苏建筑, 2020(5): 72-74. ZHANG Lei, ZHANG Yusheng. Discussion on the influence and management of metro shield construction on the adjacent foundation pit[J]. Jiangsu Construction, 2020(5): 72-74.
[6] 林萍, 叶冠林, 陈楠, 等. 冻结法施工旁通道的冻土压力现场监测方法[J]. 岩土力学, 2011, 32(8): 2555-2560. LIN Ping, YE Guanlin, CHEN Nan, et al. In-situ monitoring method for frozen soil pressure during cross passage construction by freezing method[J]. Rock and Soil Mechanics, 2011, 32(8):2555-2560.
[7] 郑立夫, 高永涛, 周喻, 等. 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020,41(6):2110-2121. ZHENG Lifu, GAO Yongtao, ZHOU Yu, et al. Research on surface frost heave and thaw settlement law and optimization of frozen wall thickness in shallow tunnel using freezing method[J]. Rock and Soil Mechanics, 2020, 41(6): 2110-2121.
[8] 唐益群, 刘昶, 赵文强. 上海淤泥质黏土层冻结法施工温度及位移场监测分析[J]. 上海国土资源, 2019, 40(1): 81-85. TANG Yiqun, LIU Chang, ZHAO Wenqiang. Survey analysis of temperature and displacement by an artificial ground freezing(AGF)construction method on a muddy clay layer in Shanghai[J]. Shanghai Land & Resources, 2019, 40(1): 81-85.
[9] 刘加奇, 钱剑峰, 徐莹.严寒地区地铁联络通道冻结法施工监测分析[J]. 哈尔滨商业大学学报(自然科学版), 2021,37(3)339-344. LIU Jiaqi, QIAN Jianfeng, XU Ying. Study on construction monitoring and analysis of freeze method of subway liaison channel in cold area[J]. Journal of Harbin University of Commerce(Natural Sciences Edition), 2021, 37(3): 339-344.
[10] 杨晓东.含盐地层中隧道涌水冻结法施工修复技术[J].建设监理,2009(7):89-91.
[11] 邓晓鹏.浸盐地层液氮冻结温度场研究[D].徐州:中国矿业大学,2016. DENG Xiaopeng. Study on the liquid nitrogen freezing temperature field in saline soil[D]. Xuzhou: China University of Mining and Technology, 2016.
[12] 张军, 李慕涵, 胡向东. 含盐地层冻土帷幕安全状态判断方法的工程应用[J]. 地下空间与工程学报, 2010, 6(1): 189-192. ZHANG Jun, LI Muhan, HU Xiangdong. Safety state assessment method of artificially frozen soil curtain in saline strata and its application[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(1): 189-192.
[1] 张姣龙,高一民,张建,周浩,潘野,柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[2] 余海岁, 庄培芝. 岩土介质小孔收缩理论及其在隧道工程中的应用[J]. 隧道与地下工程灾害防治, 2019, 1(4): 13-32.
[3] 王敦显,王孟. 超固结地层条件下深基坑围护结构与降水设计[J]. 隧道与地下工程灾害防治, 2019, 1(4): 97-102.
[4] 梁立唯, 刘春, 秦岩, 朱晨光, 邓尚. 基于MatDEM的盾构滚刀破岩离散元建模与数值模拟[J]. 隧道与地下工程灾害防治, 2019, 1(3): 116-122.
[5] 田四明,赵勇,石少帅,胡杰. 中国铁路隧道建设期典型灾害防控方法现状、问题与对策[J]. 隧道与地下工程灾害防治, 2019, 1(2): 24-48.
[6] 戎晓力,文祝,郝以庆,卢浩,熊自明. 基于可能性理论的地下工程风险裕度模型[J]. 隧道与地下工程灾害防治, 2019, 1(2): 83-91.
[7] 万先逵,魏度强,荆永波,何小辉,石钰锋. 某地下防空洞对拉锚式排桩围护结构基坑的影响[J]. 隧道与地下工程灾害防治, 2020, 2(1): 97-104.
[8] 贺斯进,赵一行,张慧鹏,饶凯,袁聪聪,石钰锋. 基于某桩锚式围护结构大变形加固方案[J]. 隧道与地下工程灾害防治, 2020, 2(4): 59-64.
[9] 赵毅. TBM强岩爆掘进段小导洞超前应力释放施工技术[J]. 隧道与地下工程灾害防治, 2022, 4(1): 78-85.
[10] 吴言坤,周诗涵,陈健,黄星凯,闵凡路. 武汉地铁8号线越江泥水盾构土岩复合地层刀具磨损分析[J]. 隧道与地下工程灾害防治, 2020, 2(3): 30-35.
[11] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn