Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (4): 20-27    DOI: 10.19952/j.cnki.2096-5052.2022.04.03
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于黄土二次抛物线型强度准则的黄土隧道应力变形计算方法
曹周阳1,关晓迪2,马迪3,窦国涛1,朱勇锋4
1.郑州航空工业管理学院土木建筑学院, 河南 郑州 450046;2.西安理工大学土木建筑工程学院, 陕西 西安 710048;3.西安交通工程学院土木工程学院, 陕西 西安 710300;4.长安大学地质工程与测绘学院, 陕西 西安 710061
Calculation method of stress and deformation of loess tunnel based on quadratic parabolic strength criterion of loess
CAO Zhouyang1, GUAN Xiaodi2, MA Di3, DOU Guotao1, ZHU Yongfeng4
1.School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, Zhengzhou 450046, Henan, China;
2.School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, Shaanxi, China;
3.School of Civil Engineering, Xi'an Traffic Engineering Institute, Xi'an 710300, Shaanxi, China;
4.School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710061, Shaanxi, China
下载:  PDF (1562KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对采用Mohr-Coulomb强度准则研究黄土隧道围岩应力及位移可能会引起较大误差的问题,综合考虑黄土抗拉和抗剪强度特性的二次抛物线型强度准则,推导黄土隧道围岩应力及位移计算新解。分析表明:隧道围岩切向应力在弹塑性交界面处出现峰值,基于二次抛物线型强度准则的切向应力峰值比基于Mohr-Coulomb强度准则的切向应力峰值减小6.1%,且前者的塑性区应力小于后者;黄土隧道围岩塑性区半径随支护反力的减小而增大,当支护反力较小时,前者的塑性区半径大于后者,且支护力越小,两者相差越大;黄土隧道周边位移随支护反力的减小而增大,前者的隧道周边位移大于后者,且随支护反力的减小,两者差异逐渐增大;将不同强度准则下的黄土隧道围岩应力与模型试验结果进行对比发现,基于二次抛物线型强度准则的黄土隧道围岩应力与模型试验结果较吻合。表明基于二次抛物线型强度准则的黄土隧道围岩应力、塑性区半径及隧道周边位移更加贴近工程实际。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹周阳
关晓迪
马迪
窦国涛
朱勇锋
关键词:  黄土隧道  二次抛物线型强度准则  内摩擦角  抗拉强度  支护反力  塑性区半径    
Abstract: The problem that the stress and displacement of surrounding rock in loess tunnels may cause large errors based on the Mohr-Coulomb strength criterion. A new solution for calculating the stress and displacement of the surrounding rock of the loess tunnel was derived based on the quadratic parabolic strength criterion, which could comprehensively consider the tensile and shear strength characteristics of the loess. The analysis showed that the peak value of tangential stress of tunnel surrounding rock appeared at the elastic-plastic interface. The peak value of tangential stress based on quadratic parabolic strength criterion was 6.1% lower than that based on Mohr-Coulomb strength criterion, and the stress in plastic zone of the former was smaller than that of the latter. The plastic zone radius of loess tunnel surrounding rock increased with the decrease of supporting force. When the supporting force was small, the plastic zone radius of the former was larger than that of the latter, and the smaller the supporting force, the greater the difference between the two. The peripheral displacement of loess tunnel increased with the decrease of supporting force, the former was larger than the latter, and the difference between the two increased gradually with the decrease of supporting force. By comparing the surrounding rock stress of the loess tunnel under different strength criteria with the model test results, it was found that the surrounding rock stress of the loess tunnel based on the quadratic parabolic strength criterion was in good agreement with the model test results. It showed that the surrounding rock stress, plastic zone radius and tunnel surrounding displacement of loess tunnel based on the quadratic parabolic strength criterion were closer to engineering practice.
Key words:  loess tunnel    quadratic parabolic strength criterion    internal friction angle    strength of extension    supporting force    plastic zone radius
收稿日期:  2022-04-30      修回日期:  2022-05-30      发布日期:  2022-12-20     
中图分类号:  TU43  
基金资助: 基金项目:河南省科技攻关资助项目(212102310967)
作者简介:  曹周阳(1982— ),男,河南济源人,博士,副教授,硕士生导师,主要研究方向为路基路面和边坡工程. E-mail: 76954638@qq.com
引用本文:    
曹周阳, 关晓迪, 马迪, 窦国涛, 朱勇锋. 基于黄土二次抛物线型强度准则的黄土隧道应力变形计算方法[J]. 隧道与地下工程灾害防治, 2022, 4(4): 20-27.
CAO Zhouyang, GUAN Xiaodi, MA Di, DOU Guotao, ZHU Yongfeng. Calculation method of stress and deformation of loess tunnel based on quadratic parabolic strength criterion of loess. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 20-27.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I4/20
[1] 曾开华, 鞠海燕, 盛国君, 等. 巷道围岩弹塑性解析解及工程应用[J]. 煤炭学报, 2011, 36(5): 752-755. ZENG Kaihua, JU Haiyan, SHENG Guojun, et al. Elastic-plastic analytical solutions for surrounding rocks of tunnels and its engineering applications[J]. Journal of China Coal Society, 2011, 36(5): 752-755.
[2] 江金硕, 李荣建, 刘军定, 等. 基于黄土联合强度的黄土隧道围岩应力及位移研究[J]. 岩土工程学报, 2019, 41(增刊2): 189-192. JIANG Jinshuo, LI Rongjian, LIU Junding, et al. Stress and displacement of surrounding rock of loess tunnels based on joint strength[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Suppl.2): 189-192.
[3] 张强, 王红英, 王水林, 等. 基于统一强度理论的破裂围岩劣化弹塑性分析[J]. 煤炭学报, 2010, 35(3): 381-386. ZHANG Qiang, WANG Hongying, WANG Shuilin, et al. Deterioration elasto-plastic analysis of cracked surrounding rocks based on unified strength theory[J]. Journal of China Coal Society, 2010, 35(3): 381-386.
[4] JAEGER J C, COOK N. Fundamentals of rock mechanics[M]. 3rd ed. London, UK: Methuen and Co., Ltd., 1979.
[5] BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, 1983, 109(1): 15-39.
[6] WANG Y. Ground response of circular tunnel in poorly consolidated rock[J]. Journal of Geotechnical Engineering, 1996, 122(9): 703-708.
[7] SHARAN S K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(1): 78-85.
[8] 刘夕才, 林韵梅. 软岩扩容性对巷道围岩特性曲线的影响[J]. 煤炭学报, 1996, 21(6): 596-601. LIU Xicai, LIN Yunmei. Effect of dilatancy of soft rocks on rock characteristic curves of tunnels[J]. Journal of China Coal Society, 1996, 21(6): 596-601.
[9] 侯公羽, 牛晓松. 基于Levy-Mises本构关系及D-P屈服准则的轴对称圆巷理想弹塑性解[J]. 岩土力学, 2009, 30(6): 1555-1562. HOU Gongyu, NIU Xiaosong. Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion[J]. Rock and Soil Mechanics, 2009, 30(6): 1555-1562.
[10] 张小波, 赵光明, 孟祥瑞. 基于Drucker-Prager屈服准则的圆形巷道围岩弹塑性分析[J]. 煤炭学报, 2013, 38(增刊1): 30-37. ZHANG Xiaobo, ZHAO Guangming, MENG Xiangrui. Elastoplastic analysis of surrounding rock on circular roadway based on Drucker-Prager yield criterion[J]. Journal of China Coal Society, 2013, 38(Suppl.1): 30-37.
[11] 陈立伟, 彭建兵, 范文, 等. 基于统一强度理论的非均匀应力场圆形巷道围岩塑性区分析[J]. 煤炭学报, 2007, 32(1): 20-23. CHEN Liwei, PENG Jianbing, FAN Wen, et al. Analysis of surrounding rock mass plastic zone of round tunnel under non-uniform stress field based on the unified strength theory[J]. Journal of China Coal Society, 2007, 32(1): 20-23.
[12] 蒋斌松, 张强, 贺永年, 等. 深部圆形巷道破裂围岩的弹塑性分析[J]. 岩石力学与工程学报, 2007, 26(5): 982-986. JIANG Binsong, ZHANG Qiang, HE Yongnian, et al. Elastoplastic analysis of cracked surrounding rocks in deep circular openings[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 982-986.
[13] ZHANG L M, WANG Z Q, LI H F, et al. Elastic-plastic analysis for surrounding rock of pressure tunnel with liner based on material nonlinear softening[M] //Geotechnical Engineering for Disaster Mitigation and Rehabilitation. Beijing:Springer Berlin Heidelberg, 2008: 1085-1092.
[14] 张常光, 张庆贺, 赵均海. 考虑应变软化、剪胀和渗流的水工隧洞解析解[J]. 岩土工程学报, 2009, 31(12): 1941-1946. ZHANG Changguang, ZHANG Qinghe, ZHAO Junhai. Analytical solutions of hydraulic tunnels considering strain softening, shear dilation and seepage[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1941-1946.
[15] ZHANG Q, ZHANG H X, LAI J X. Finite element analysis for the displacement characteristics of loess tunnel with weak surrounding rock[J]. Advanced Materials Research, 2012, 487: 64-68.
[16] 张瀚, 李英明, 任方涛, 等. 基于Zienkiewicz-Pande准则的隧道/巷道围岩弹塑性分析[J]. 现代隧道技术, 2015, 52(2): 30-35. ZHANG Han, LI Yingming, REN Fangtao, et al. Elasto-plastic analysis of the surrounding rock of a tunnel/roadway based on the Zienkiewicz-Pande criterion[J]. Modern Tunnelling Technology, 2015, 52(2): 30-35.
[17] 苏雅, 苏永华, 赵明华. 基于Hoek-Brwon准则的软岩隧道围岩极限变形估算方法[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3033-3040. SU Ya, SU Yonghua, ZHAO Minghua. An evaluation approach to ultimate deformation of tunnel surrounding rock in weak rocks based on the Hoek-Brown criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Suppl.2): 3033-3040.
[18] 王衍汇, 倪万魁, 袁志辉. 原状黄土的联合强度理论探讨[J]. 合肥工业大学学报(自然科学版), 2015, 38(12): 1688-1692. WANG Yanhui, NI Wankui, YUAN Zhihui. Discussion on joint strength theory of intact loess[J]. Journal of Hefei University of Technology(Natural Science), 2015, 38(12): 1688-1692.
[19] 王衍汇. 原状黄土的联合强度理论及其边坡工程应用[D]. 西安:长安大学, 2016. WANG Yanhui. Study on undisturbed loess joint strength theory and slope engineering applications[D]. Xi'an: Chang'an University, 2016.
[20] 王衍汇, 倪万魁, 戴磊,等. 二次抛物线破坏准则下的黄土边坡稳定性分析[J]. 地下空间与工程学报, 2017, 13(3): 833-839. WANG Yanhui, NI Wankui, DAI Lei, et al. Loess slope stability analysis with quadratic parabola failure criterion[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 833-839.
[21] 关晓迪, 马迪, 曹周阳, 等. 基于二次抛物线型强度准则的黄土被动土压力计算[C] //2021年全国土木工程施工技术交流会论文集(下册).[出版地不详] :[出版者不详] , 2021: 547-551.
[22] 何盛东, 关晓迪, 张明飞, 等. 基于黄土二次抛物线准则的邓肯-张模型修正[J]. 郑州航空工业管理学院学报, 2022, 40(2): 92-96. HE Shengdong, GUAN Xiaodi, ZHANG Mingfei, et al. Modification of Duncan-Zhang model based on quadratic parabola criterion of loess[J]. Journal of Zhengzhou University of Aeronautics, 2022, 40(2): 92-96.
[23] 国家铁路局. 铁路隧道设计规范: TB 10003—2016[S]. 北京: 中国铁道出版社, 2017.
[24] 赵彭年. 松散介质力学[M]. 北京: 地震出版社,1995.
[25] 关晓迪, 何盛东, 曹周阳, 等. 基于统一强度的非轴对称荷载隧道围岩弹塑性分析[J]. 建筑结构, 2021, 51(增刊2): 1728-1733. GUAN Xiaodi, HE Shengdong, CAO Zhouyang, et al. Elastoplastic analysis of tunnel surrounding rock under non-axisymmetric load based on unified strength[J]. Building Structure, 2021, 51(Suppl.2): 1728-1733.
[1] 李鹏飞,王帆. 黄土隧道复合衬砌间接触压力的统计分析[J]. 隧道与地下工程灾害防治, 2021, 3(2): 16-22.
[2] 宋战平,刘彦龙,张玉伟. 黄土隧道深浅埋界限划分研究现状及展望[J]. 隧道与地下工程灾害防治, 2021, 3(2): 1-15.
[3] 刘晓杰,梁庆国,刘传新,张堂杰,王文卓. 富水深埋黄土隧道变形规律及控制措施[J]. 隧道与地下工程灾害防治, 2021, 3(2): 23-32.
[4] 宋瑞霞,赵永虎,米维军,韩侃,蒋育华. 帷幕注浆在富水大跨度黄土隧道中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(2): 43-48.
[5] 陈建勋,罗彦斌. 大跨度黄土公路隧道结构稳定性及控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 93-101.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn