Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (1): 1-7    DOI: 10.19952/j.cnki.2096-5052.2023.01.01
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
断层破碎带岩石裂隙渗透性的表征方法
孙文斌1,2,曹震博1,董法旭1
(1.山东科技大学能源与矿业工程学院, 山东 青岛 266590;2.煤炭资源高效开采与洁净利用国家重点实验室, 北京 100013
Characterization method of rock fracture permeability in fault fracture zone
SUN Wenbin1,2, CAO Zhenbo1, DONG Faxu1
(1. School of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China;
2. State Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, China
下载:  PDF (2873KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过模拟断层破碎带岩石裂隙内流体流动,得到自然裂隙内流体流动分布规律。根据理论分析建立楔形流域的流速分布模型,发现裂隙主流区的位置可以用裂隙截面的最大内切圆表示。采用计算机断层扫描算法(computed tomography, CT)重建断层介质骨架自然裂隙,使用MATLAB求解截面裂隙的最大内切圆来计算裂隙的渗透性。将最大内切圆法计算裂隙渗透性和水力直径法计算裂隙渗透性的结果进行相关性分析,两者相关性为0.976,说明裂隙截面的最大内切圆替代水力直径计算裂隙渗透性是可行的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙文斌
曹震博
董法旭
关键词:  断层破碎带  岩石裂隙  渗透性  CT扫描    
Abstract: The distribution law of fluid flow in natural fissures was obtained by simulating the fluid flow in the rock fissures of the fault fracture zone. Based on the theoretical analysis, the velocity distribution model of wedge-shaped flow field was established. It was found that the location of the fracture mainstream zone could be expressed by the maximum inscribed circle of the fracture section. Computed tomography(CT)was used to reconstruct the natural fracture of the dielectric skeleton of the fault, and the maximum inscribed circle of the fracture was calculated by MATLAB to estimate the permeability of the fracture. The correlation between the results to calculate the fracture permeability obtained by the maximum inscribed circle method and the hydraulic diameter method was 0.976, which indicated that it was feasible to calculate the fracture permeability by the maximum inscribed circle of the fracture section instead of the hydraulic diameter.
Key words:  fault fracture zone    rock fracture    permeability    CT
收稿日期:  2022-11-21      修回日期:  2023-01-14      发布日期:  2023-03-20     
中图分类号:  TU42  
基金资助: 国家自然科学基金面上资助项目(51974172,52274131);山东省高等学校青创科技计划资助项目(2020KJH001);煤炭资源高效开采与洁净利用国家重点实验室开放基金资助项目(2021-CMCU-KF017)
作者简介:  孙文斌(1981— ),男,山东郓城人,博士,教授,博士生导师,主要研究方向为矿井水害防治. E-mail:swb@sdust.edu.cn
引用本文:    
孙文斌, 曹震博, 董法旭. 断层破碎带岩石裂隙渗透性的表征方法[J]. 隧道与地下工程灾害防治, 2023, 5(1): 1-7.
SUN Wenbin, CAO Zhenbo, DONG Faxu. Characterization method of rock fracture permeability in fault fracture zone. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 1-7.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I1/1
[1] 张庆松,张连震,李鹏,等.地下工程富水软弱地层注浆加固理论研究新进展[J].隧道与地下工程灾害防治,2019,1(1):47-57. ZHANG Qingsong, ZHANG Lianzhen, LI Peng, et al. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1):47-57.
[2] 李鹏飞,刘宏翔,赵勇,等.隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J].隧道与地下工程灾害防治,2020,2(3):77-84. LI Pengfei, LIU Hongxiang, ZHAO Yong, et al. The minimum safe thickness of tunnel passing through fault fracture zone and its influencing factors[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3):77-84.
[3] 彭娇,曲冠政,卫海涛,等.基于裂缝中流体渗流特征的迂曲度计算新方法[J].断块油气田,2019,26(4):495-500. PENG Jiao, QU Guanzheng, WEI Haitao, et al. New tortuosity calculation based on fluid migration characteristics in fracture[J]. Fault-Block Oil & Gas Field, 2019, 26(4):495-500.
[4] 吴金随,胡德志,郭均中,等.多孔介质中迂曲度和渗透率的关系[J].华北科技学院学报,2016,13(4):56-59. WU Jinsui, HU Dezhi, GUO Junzhong, et al. Study on the relationship between tortuosity and permeability in porous media[J]. Journal of North China Institute of Science and Technology, 2016, 13(4):56-59.
[5] 黄震. 流固耦合作用下岩体渗流演化规律与突水灾变机理研究[D].徐州:中国矿业大学,2016. HUANG Zhen. Seepage evolution in rock masses and catastrophe mechanism of water inrush under liquid-solid coupling effect[D]. Xuzhou: China University of Mining and Technology, 2016.
[6] 王鹏飞. 渗压作用下断层带岩体断裂导渗演化机制研究[D].北京:北京科技大学,2019. WANG Pengfei. Study on evolution mechanism of fracture and seepage of fault zone rockmass under osmotic pressure[D]. Beijing: Beijing University of Science and Technology, 2019.
[7] 王志良,申林方,徐则民,等.岩体裂隙面粗糙度对其渗流特性的影响研究[J].岩土工程学报,2016,38(7):1262-1268. WANG Zhiliang, SHEN Linfang, XU Zemin, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7):1262-1268.
[8] 徐青,喻亚奇.岩石裂隙渗流立方定律的修正及应用[J/OL].武汉大学学报(工学版)[2022-11-21].https://kns.cnki.net/kcms/detail/42.1675.T.20220415.1920.006.html. XU Qing, YU Yaqi. Corrected cubic law for rock fracture seepage and its application[J/OL]. Engineering Journal of Wuhan University [2022-11-21].https://kns.cnki.net/kcms/detail/42.1675.T.20220415.1920.006.html.
[9] 朱寅斌,李长冬,周佳庆,等.粗糙岩石单裂隙非达西流动的实验和数值模拟研究[J/OL].岩土工程学报[2022-11-21]. https://kns.cnki.net/kcms/detail/32.1124.tu.20220625.1042.004.html. ZHU Yinbin, LI Changdong, ZHOU Jiaqing, et al. Experimental and numerical study of non-Darcian flow in single rough-walled rock fracture[J/OL]. Chinese Journal of Geotechnical Engineering[2022-11-21]. https://kns.cnki.net/kcms/detail/32.1124.tu.20220625.1042.004.html.
[10] MARTIN C D. Rock stability considerations for siting and constructing a KBS-3 repository[D].Edmonton, Canada:University of Alberta, 2001.
[11] OTTO S, TILL P, HARTMUT K. Development of damage and permeability in deforming rock salt[J]. Engineer Geology, 2001, 61:163-180.
[12] 王晓凡.不同水胶比和不同粉煤灰掺量下混凝土渗透性试验研究[J].水利科技与经济,2018,24(11):31-35. WANG Xiaofan. Research on concrete permeability test under different water-cement ratios and different mixed fly ash content[J].Water Conservancy Science and Technology and Economy, 2018, 24(11):31-35.
[13] 朱红光,谢和平,易成,等.破断岩体裂隙的流体流动特性分析[J].岩石力学与工程学报,2013,32(4):657-663. ZHU Hongguang, XIE Heping, YI Cheng, et al. Analysis of properties of fluid flow in rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4):657-663.
[14] 高学平. 高等流体力学[M]. 天津: 天津大学出版社, 2005.
[15] 孙藏军,黄建廷,别旭伟,等.A构造低渗砂砾岩微观孔喉结构及对物性和产能的影响[J].复杂油气藏,2020,13(4):63-68. SUN Cangjun, HUANG Jianting, BIE Xuwei, et al. Micropore throat structure of low-permeability glutenite reservoir in structure A and its influence on physical properties and productivity[J]. Complex Hydrocarbon Reservoirs, 2020, 13(4):63-68.
[16] 王录合,赵春孝,姜振泉,等.基于数字图像及数值模拟的裂隙岩体渗透特征[J].煤田地质与勘探,2016,44(1):100-102. WANG Luhe, ZHAO Chunxiao, JIANG Zhenquan, et al. Permeability characteristics of fractured rock based on digital image and numerical simulation[J]. Coal Geology & Exploration, 2016, 44(1):100-102.
[17] 王刚,杨鑫祥,张孝强,等.基于CT三维重建的煤层气非达西渗流数值模拟[J].煤炭学报,2016,41(4):931-940. WANG Gang, YANG Xinxiang, ZHANG Xiaoqiang, et al. Numerical simulation on non-Darcy seepage of CBM by means of 3D reconstruction based on computed tomography[J]. Journal of China Coal Society, 2016, 41(4):931-940.
[18] 王献朝,邱华强,许岩.关于水力半径计算方法的探讨[J].科技信息,2012(7):131,110. WANG Xianchao, QIU Huaqiang, XU Yan. Discussion on the calculation method of hydraulic radius[J]. Science and Technology Information, 2012(7):131,110.
[19] 鞠杨,张钦刚,杨永明,等.岩体粗糙单裂隙流体渗流机制的实验研究[J].中国科学:技术科学,2013,43(10):1144-1154. JU Yang, ZHANG Qingang, YANG Yongming, et al. Experimental study on fluid seepage mechanism of rough single fracture in rock mass[J]. Scientia Sinica(Technologica), 2013, 43(10):1144-1154.
[20] 刘杰,王者超,张宇鹏,等.岩石粗糙裂隙大范围雷诺数条件下渗流特性[J].山东大学学报(工学版),2019,49(4):70-77. LIU Jie, WANG Zhechao, ZHANG Yupeng, et al. Flow characteristics of rough rock fractures under wide range of Reynolds numbers[J]. Journal of Shandong University(Engineering Science), 2019, 49(4):70-77.
[21] 李治豪,陈世江.不同粗糙度裂隙渗流特性数值模拟研究[J].矿业安全与环保,2021,48(4):6-11. LI Zhihao, CHEN Shijiang. Numerical simulation of seepage characteristics of fractures with different roughness[J].Mining Safety & Environmental Protection, 2021, 48(4):6-11.
[22] 潘汝江,何翔.岩石断裂面曲折度影响下的粗糙单裂隙渗流规律[J].辽宁工程技术大学学报(自然科学版),2020,39(4):293-298. PAN Rujiang, HE Xiang. Seepage law of rough single fracture under the influence of tortuosity of rock fracture surface[J]. Journal of Liaoning Technical University(Natural Science), 2020, 39(4):293-298.
[23] 何冠鸿. 岩石单裂隙渗流粗糙起伏角修正公式研究[D].北京:清华大学,2014. HE Guanhong. Study on the modified equation of single fracture seepage with roughness angle[D]. Beijing: Tsinghua University, 2014.
[24] 王志良,申林方,李邵军,等.基于格子Boltzmann方法的岩体单裂隙面渗流特性研究[J].岩土力学,2017,38(4):1203-1210. WANG Zhiliang, SHEN Linfang, LI Shaojun, et al. Seepage characteristics of a single fracture based on lattice Boltzmann method[J]. Rock and Soil Mechanics, 2017, 38(4):1203-1210.
[25] 王鹏飞,谭文辉,马学文,等.不同粗糙度和隙宽贯通充填裂隙渗流特性试验研究[J].岩土力学,2019,40(8):3062-3070. WANG Pengfei, TAN Wenhui, MA Xuewen, et al. Experimental study of seepage characteristics of consecutive and filling fracture with different roughness levels and gap-widths[J]. Rock and Soil Mechanics, 2019, 40(8):3062-3070.
[1] 李鹏飞,刘宏翔,赵勇,刘建友,王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[2] 张庆松,张连震,李鹏,冯啸. 地下工程富水软弱地层注浆加固理论研究新进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 47-57.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[3] LIN Ying, WANG Guobo, SHI Longfei, WANG Jianning. Seismic Response Study of Close Space Curve Tunnel Cluster[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -0 .
[4] YU Haisui, ZHUANG Peizhi. Cavity contraction theory and its application to tunnelling[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 13 -32 .
[5] LIU Run, HUANG Xuanzhi, YUAN Yu, MA Pengcheng. Study of soil degradation effects on offshore wind turbine with large-diameter pile foundation[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 56 -63 .
[6] HAN Guiwu, GUO Shutai, ZHOU Rou. Research and application of coal mine roadway oil storage technology system[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[7] ZONG Junliang, RAO Qian, WANG Qi, YU Haitao. Numerical simulation of the dynamic response of ground penetrating ultra shallow-buried shield tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[8] ZHENG Yingren, WANG Yongfu. Stability analysis and design method of tunnel surrounding rock[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 1 -12 .
[9] CHEN Jian, XUE Feng, ZHAO Hequan, FANG Zhongyu. Pipeline conveying resistance and slag carrying characteristics of large diameter slurry shield circulation system[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(2): 83 -91 .
[10] ZUO Yujun, WAN Ruzhen, SUN Wenjibin, LIU Hao, LIN Jianyun, LOU Yili. The influence of different excavation methods on the stability of surrounding rock of tunnel in coal-bearing strata[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 64 -74 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn