Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (1): 18-31    DOI: 10.19952/j.cnki.2096-5052.2023.01.03
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
岩土力学参数的空间变异性对地面沉降的影响
高燕1,2,吴晓东1,2,田嘉逸1,2
(1.中山大学地球科学与工程学院, 广东 珠海 519082;2.南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
Influence of spatial variability of geotechnical mechanical parameters on land subsidence
GAO Yan1,2, WU Xiaodong1,2, TIAN Jiayi1,2
1. School of Earth Sciences and Engineering, SunYat-sen University, Zhuhai 519082, Guangdong, China;2. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519082, Guangdong, China
下载:  PDF (21052KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于随机场理论、有限元数值分析与Monte-Carlo随机模拟方法,研究岩土参数的空间变异性对地面沉降的影响。以内摩擦角和弹性模量空间变异性为重点,系统研究内摩擦角和弹性模量随机场的变异系数、水平和竖向相关距离对地面沉降的影响。结果表明:变异系数越大,地面沉降曲线分布的离散程度越高;对比确定性分析结果,考虑岩土参数空间变异性的随机分析结果的地面沉降更大;沉降中心偏移距离受水平相关距离和竖向相关距离影响,前者影响更大;弹性模量空间变异性对沉降中心偏移距离和沉降槽宽度的影响比内摩擦角空间变异性更大;当洞室较大时,洞室对地面沉降曲线形态的影响远大于洞室周围岩土参数变异性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高燕
吴晓东
田嘉逸
关键词:  地面沉降  空间变异性  相关距离  随机场理论    
Abstract: Based on random field theory, finite element numerical analysis and Monte-Carlo stochastic simulation method, the influence of spatial variability of geotechnical parameters on land subsidence was investigated. The spatial variability of the internal friction angle was focused as the representative, and the effects of the coefficient of variation, horizontal correlation distance and vertical correlation distance of the internal friction angle were systematically studied. It was found that the larger the coefficient of variation was, the higher the dispersion degree of land subsidence curve was; compared with the results of deterministic analysis, the ground subsidence of the stochastic analysis considering the spatial variability of geotechnical parameter was greater; the offset distance of settlement center was affected by horizontal and vertical correlation distance, and the former had greater influence; when cavern was large enough, the influence of cavern on land subsidence was stronger than that of spatial variability of geotechnical mechanical parameters.
Key words:  land subsidence    spatial variability    correlation distance    random field theory
收稿日期:  2022-06-20      修回日期:  2022-11-11      发布日期:  2023-03-20     
中图分类号:  TU478  
基金资助: 国家自然科学基金资助项目(42072295);广东省创新创业团队资助项目(2017ZT07Z066)
作者简介:  高燕(1984— ),女,河北故城人,博士,副教授,博士生导师,主要研究方向为宏微观结构性,智能监测,地下工程. E-mail:gaoyan25@mail.sysu.edu.cn
引用本文:    
高燕, 吴晓东, 田嘉逸. 岩土力学参数的空间变异性对地面沉降的影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 18-31.
GAO Yan, WU Xiaodong, TIAN Jiayi. Influence of spatial variability of geotechnical mechanical parameters on land subsidence. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 18-31.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I1/18
[1] 张云, 叶淑君,李勤奋.中国地面沉降及其需要解决的几个问题[J]. 第四纪研究, 2003, 23(6): 585-593. ZHANG Yun, YE Shujun, LI Qinfen. Land subsidence in China and its problems[J]. Quaternary Sciences, 2003, 23(6): 585-593.
[2] BAGHERI-GAVKOSH M, HOSSEINI S M, ATAIE-ASHTIANI B, et al. Land subsidence: a global challenge[J]. Science of the Total Environment, 2021, 778: 146193.
[3] PECK R B. Deep excavations and tunneling in soft ground[C] // Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, Mexico: Sociedad Mexicana de Mecanica, 1969: 225-290.
[4] O'REILLY M P, NEW B M. Settlements above tunnels in the United Kingdom-their magnitude and prediction [C] // Proceedings of the Tunnelling 82, Institution of Mining and Metallurgy. London, UK:[s.n.] , 1982: 173-181.
[5] RANKIN W J. Ground movements resulting from urbantunnelling: predictions and effects[J]. Engineering Geology Special Publications, 1988, 5(1): 79-92.
[6] 姜忻良,赵志民,李园. 隧道开挖引起土层沉降槽曲线形态的分析与计算[J]. 岩土力学, 2004,25(10): 1542-1544. JIANG Xinliang, ZHAO Zhimin, LI Yuan. Analysis and calculation of surface and subsurface settlement trough profiles due to tunneling[J]. Rock and Soil Mechanics, 2004, 25(10): 1542-1544.
[7] ADDENBROOKE T I, POTTS D M, PUZRIN A M. The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction[J]. Géotechnique, 1997, 47(3): 693-712.
[8] 冯卫星, 侯学渊, 夏明耀. 隧道施工引起地面沉陷的几何非线性分析[J]. 岩石力学与工程学报,1995,14(1): 1-10. FENG Weixing, HOU Xueyuan, XIA Mingyao. Geometric nonlinearity analysis of groundsurface settlement caused by tunnelling[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14(1): 1-10.
[9] SIMPSON B, ATKINSON J H, JOVICIC V. The influence of anisotropy on calculations of ground settlements above tunnels[C] // Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. London, UK: A. A. Balkema, Rotterdam, 1996: 591-594.
[10] TANG D K W, LEE K M, NGC W W. Stress paths around a 3-D numerically simulated NATM tunnel in stiff clay[C] //Geotechnical Aspects of Underground Construction in Soft Ground. Leiden, Netherlands: A A Balkema Publishers, 2000: 443-449.
[11] 朱维申, 李勇, 张磊, 等. 高地应力条件下洞群稳定性的地质力学模型试验研究[J]. 岩石力学与工程学报, 2008, 27(7): 1308-1314. ZHU Weishen, LI Yong, ZHANG Lei, et al. Geomechanical model test on stability of cavern group under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1308-1314.
[12] 房倩, 张顶立, 王毅远, 等. 圆形洞室围岩破坏模式模型试验研究[J]. 岩石力学与工程学报, 2011, 30(03): 564-571. FANG Qian, ZHANG Dingli, WANG Liyuan, et al. Model test study of failure modes of surrounding rock for circular caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 564-571.
[13] VANMARCKE E H. Probabilistic modeling of soil profiles[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1227-1246.
[14] 易顺, 林伟宁, 陈健, 等. 基于随机场理论的基坑开挖地表及围护墙变形分析[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3389-3398. YI Shun, LIN Weining, CHEN Jian, et al. Deformation analysis of surface and retaining wall induced by braced excavation based on random field theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Suppl.2): 3389-3398.
[15] 方超, 薛亚东. 围岩空间变异性对隧道结构可靠度的影响分析[J]. 现代隧道技术, 2014, 51(5): 41-47. FANG Chao, XUE Yadong. Analysis of the influence of spatial variability of surrounding rock on the reliability of a tunnel structure[J]. Modern Tunnelling Technology, 2014, 51(5): 41-47.
[16] SONG K I, CHO G C, LEE S W. Effects of spatially variable weathered rock properties on tunnel behavior[J]. Probabilistic Engineering Mechanics, 2011, 26(3): 413-426.
[17] XIAO L, HUANG H, ZHANG J. Effect of soil spatial variability on ground settlement induced by shield tunnelling[C] //Geo-Risk 2017: Impact of Spatial Variability, Probabilistic Site Characterization, and Geohazards. Denver, USA: American Society of Civil Engineers, 2017: 330-339.
[18] 张晋彰, 黄宏伟, 张东明, 等. 考虑参数空间变异性的隧道结构变形分析简化方法[J]. 岩土工程学报, 2022, 44(1): 134-143. ZHANG Jinzhang, HUANG Hongwei, ZHANG Dongming, et al. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143.
[19] 李健斌, 陈健, 罗红星, 等. 基于随机场理论的双线盾构隧道地层变形分析[J]. 岩石力学与工程学报, 2018, 37(7): 1748-1765. LI Jianbin, CHEN Jian, LUO Hongxing, et al. Study on surrounding soil deformation induced by twin shield tunneling based on random field theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1748-1765.
[20] LI D Q, JIANG S H, CHEN Y F, et al. Reliability analysis of serviceability performance for an underground cavern using a non-intrusive stochastic method[J]. Environmental Earth Sciences, 2014, 71(3): 1169-1182.
[21] CHENG H Z, CHEN J, CHEN R P, et al. Reliability study on shield tunnel face using a random limit analysis method in multilayered soils[J].Tunnelling and Underground Space Technology, 2019, 84: 353-363.
[22] MOLLON G, PHOON KK, DIAS D, et al. Validation of a new 2D failure mechanism for the stability analysis of a pressurized tunnel face in a spatially varying sand[J]. Journal of Engineering Mechanics, 2011, 137(1): 8-21.
[23] 张继周, 缪林昌, 刘峰. 岩土参数的不确定性及其统计方法[J]. 岩土力学, 2008, 29(增刊1): 495-499. ZHANG Jizhou, MIAO Linchang, LIU Feng. Uncertainties of soil properties and its statistical methods[J]. Rock and Soil Mechanics, 2008, 29(Suppl.1): 495-499.
[24] 王景梅, 肖芳, 陈家俊, 等. 基于贝叶斯理论和蒙特卡洛模拟的桩基可靠度分析[J]. 地下空间与工程学报, 2017, 13(增刊1): 85-90. WANG Jingmei, XIAO Fang, CHEN Jiajun, et al. A reliability analysis method for pile foundation based on Bayesian theory and Monte Carlo simulation[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(Suppl.1): 85-90.
[25] 李健斌, 陈健, 程红战, 等. 考虑空间变异性的盾构隧道地层力学响应敏感性分析[J]. 岩石力学与工程学报, 2019, 38(8): 1667-1676. LI Jianbin, CHEN Jian, CHENG Hongzhan, et al. Sensitivity analysis of mechanical parameters to surrounding-soil response induced by shield tunneling considering spatial variability[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1667-1676.
[26] 赵明华, 肖尧, 徐卓君, 等. 岩溶区嵌岩桩桩端承载性能研究[J]. 岩土工程学报, 2017, 39(6): 1123-1129. ZHAO Minghua, XIAO Yao, XU Zhuojun, et al. Bearing capacity at tip of rock-socketed pile in Karst areas[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1123-1129.
[1] 李福豪. 水泥加固海相软土的特征强度[J]. 隧道与地下工程灾害防治, 2019, 1(3): 9-13.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[3] LIN Ying, WANG Guobo, SHI Longfei, WANG Jianning. Seismic Response Study of Close Space Curve Tunnel Cluster[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -0 .
[4] YU Haisui, ZHUANG Peizhi. Cavity contraction theory and its application to tunnelling[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 13 -32 .
[5] LIU Run, HUANG Xuanzhi, YUAN Yu, MA Pengcheng. Study of soil degradation effects on offshore wind turbine with large-diameter pile foundation[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 56 -63 .
[6] HAN Guiwu, GUO Shutai, ZHOU Rou. Research and application of coal mine roadway oil storage technology system[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[7] ZONG Junliang, RAO Qian, WANG Qi, YU Haitao. Numerical simulation of the dynamic response of ground penetrating ultra shallow-buried shield tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[8] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[9] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[10] LIU Xian, SUN Qihao. Case analysis on progressive collapse of shield tunnel linings[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(2): 21 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn