Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (2): 59-70    DOI: 10.19952/j.cnki.2096-5052.2023.02.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不良地质段双护盾TBM施工综合处理技术
杨继华1,闫长斌2*,齐三红1,郭卫新1,杨风威1
1.黄河勘测规划设计研究院有限公司, 河南 郑州 450003;2.郑州大学水利与土木工程学院, 河南 郑州 450001
Comprehensive treatments of double shield TBM construction in adverse geological sections
YANG Jihua1, YAN Changbin2*, QI Sanhong1, GUO Weixin1, YANG Fengwei1
1. Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, Henan, China;
2. College of Hydraulic and Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
下载:  PDF (7361KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对兰州市水源地建设工程深埋长输水隧洞双护盾TBM在不良地质条件下的施工问题,采用数据统计、工程类比等方法,提出了综合处理技术及措施。在TBM施工前,对F3及F8断层带采用钻爆法开挖,初期支护保证围岩稳定后,TBM滑行通过并安装管片;采用了以隧洞沿线地质分析为基础,结合掌子面围岩观察、岩渣分析、掘进参数分析、三维地震法和三维电阻率法等方法的综合超前地质预报方法,对掌子面前围岩地质条件进行综合预报;采用“以排为主,排堵结合”的原则,建立TBM变坡段排水系统,根据涌水量确定排水系统的运行方式,减轻了涌水对施工的影响;根据TBM前盾被卡的特征,采用从伸缩护盾处人工开挖导洞释放围岩压力的方法使TBM脱困;采用化学灌浆和水泥灌浆固结破碎围岩,控制TBM掘进参数,慢速掘进通过破碎带。TBM施工实践表明:所采用的技术行之有效,不良地质条件未对TBM造成严重后果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨继华
闫长斌
齐三红
郭卫新
杨风威
关键词:  输水隧洞  兰州水源地  双护盾TBM  不良地质条件  综合处理    
Abstract: Aiming at the poor geological conditions of water conveyance tunnel in Lanzhou water source construction engineering by double shield TBM excavation, the comprehensive methods and treatments were put forward by data statistics, engineering analogies, and other methods. Before TBM tunneling, F3 fault zone and F8 fault zone were excavated by drilling and blasting method. After initial support which guaranteed the stability of surrounding rock, TBM slided through and installed segments. Based on geological analysis along tunnel, combination the observation of tunneling face, rock muck analysis and tunneling parameter analysis, the geological conditions of surrounding rock in front of tunneling face were comprehensively predicted by using three-dimension seismic method and three-dimensional resistivity method. The principle of "drainage first, drainage and plugging combined" was adopted, the variable slope drainage system was established, the operation mode of the drainage system was determined according to the amount of water gushing. According to the characteristics of the front shield blocked, the method of releasing surrounding rock pressure by manual excavation of the heading tunnel from the telescopic shield was adopted to make the TBM out of blocked. Based on identifying geological conditions, the use of chemical grouting and cement grouting consolidation broken surrounding rock, controlling TBM tunneling parameters, slow tunneling through the fracture zone. TBM tunnneling practice shows that the adopted technology is effective and the poor geological conditions have not caused serious consequences for TBM.
Key words:  water conveyance tunnel    lanzhou water source    double shield tunnel boring machine    adverse geology conditions    comprehensive treatments
收稿日期:  2023-04-23      修回日期:  2023-06-15      发布日期:  2023-06-20     
中图分类号:  TV554+.2  
基金资助: 国家自然科学基金资助项目(41972270);水利部黄河流域水治理与水安全重点实验室(筹)研究基金资助项目(2022-SYSJJ-06);盾构及掘进技术国家重点实验室开放课题资助项目(SKLST-2019-K06);黄河勘测规划设计研究院有限公司自主研究开发资助项目(2020-ky04、2022KY003、2023KY014)
通讯作者:  闫长斌(1979— ),男,河南台前人,博士,教授,博士生导师,主要研究方向为岩土与地下工程。    E-mail:  yanchangbin_2001@163.com
作者简介:  杨继华(1980— ),男,河南潢川人,博士,正高级工程师,主要研究方向为岩土工程勘察、设计、研究。 E-mail:yangjihua68@sohu.com.
引用本文:    
杨继华, 闫长斌, 齐三红, 郭卫新, 杨风威. 不良地质段双护盾TBM施工综合处理技术[J]. 隧道与地下工程灾害防治, 2023, 5(2): 59-70.
YANG Jihua, YAN Changbin, QI Sanhong, GUO Weixin, YANG Fengwei. Comprehensive treatments of double shield TBM construction in adverse geological sections. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(2): 59-70.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I2/59
[1] 李建斌, 陈馈. 双护盾TBM的技术特点及工程应用[J]. 建筑机械化, 2006, 27(3): 46-49. LI Jianbin, CHEN Kui. Technique characters of double shield machine TBM and its application in projects[J]. Construction Mechanization, 2006, 27(3): 46-49.
[2] 黄舰. 青岛地铁区间隧道双护盾TBM地质适应性分析[J]. 现代隧道技术, 2016, 53(3): 42-46. HUANG Jian. On the geological adaptability of the double-shield TBM for the Qingdao metro tunnel[J]. Modern Tunnelling Technology, 2016, 53(3): 42-46.
[3] 王杜娟, 宁向可. 城市地铁双护盾TBM设计及应用[J]. 隧道建设(中英文), 2018, 38(6): 1052-1059. WANG Dujuan, NING Xiangke. Design and application of double-shield TBMs for urban metro tunnels[J]. Tunnel Construction, 2018, 38(6): 1052-1059.
[4] 谢明, 赵晋友. 双护盾隧道掘进机(TBM)技术浅谈[J]. 现代隧道技术, 2006, 43(5): 23-30. XIE Ming, ZHAO Jinyou. Technical features of double-shield tunnel boring machine(TBM)[J]. Modern Tunnelling Technology, 2006, 43(5): 23-30.
[5] 蒙先君. 长距离双护盾TBM施工探讨[J]. 隧道建设(中英文), 2008, 28(4): 429-433. MENG Xianjun. Comments on long-distance tunnel construction by means of double-shield TBMs[J].Tunnel Constuction, 2008, 28(4): 429-433.
[6] 张超. 青海“引大济湟”工程TBM卡机段围岩大变形特性及扩挖洞室支护方案研究[D]. 成都: 成都理工大学, 2012. ZHANG Chao. Research on surrounding rock large deformation characteristics and chamber enlargement support in TBM block tunnel section in “Yindajihuang” Project in Qinghai[D]. Chengdu: Chengdu University of Technology, 2012.
[7] 尚彦军, 杨志法, 曾庆利, 等. TBM施工遇险工程地质问题分析和失误的反思[J]. 岩石力学与工程学报, 2007, 27(12): 2404-2411. SHANG Yanjun, YANG Zhifa, ZENG Qingli, et al. Retrospective analysis of TBM accidents from its poor flexiibility to complicated geological conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2007,27(12):2404-2411.
[8] 谷婷,卢松,李苍松.引红济石调水工程双护盾TBM施工段卡机脱困地质分析[J].工程地质学报, 2011, 19(增刊1): 437-441. GU Ting, LU Song, LI Cangsong. The sticking machine turnaround geological analysis about the TBM construction in drawing of water delivery tunnel in Yinhongjishi Water Transfer Project[J].Journal of Engineering Geology, 2011, 19(Suppl.1): 437-441.
[9] 陈卫忠, 陈飞飞, 赵武胜, 等. TBM挤压大变形隧洞管片错台及加固机理研究[J]. 山东大学学报(工学版), 2017, 47(2): 1-6. CHEN Weizhong, CHEN Feifei, ZHAO Wusheng, et al. TBM tunnel segment dislocation due to large deformation and reinforcement mechanism on surrounding rockmass[J]. Journal of Shandong University(Engineering Science), 2017, 47(2): 1-6.
[10] 孙金山, 卢文波, 苏利军. 双护盾TBM在软弱地层中的掘进模式选择[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3668-3673. SUN Jinshan, LU Wenbo, SU Lijun.Selection of advancing mode of double-shielded TBM in weak rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Suppl.2): 3668-3673.
[11] 喻伟, 王利明, 周建军, 等. 基于断层影响双护盾TBM隧道稳定性分析及加固措施研究[J]. 河南科学, 2018, 36(6): 870-879. YU Wei, WANG Liming, ZHOU Jianjun, et al. Stability analysis and reinforcement study of double shield TBM tunnel based on fault geology[J]. Henan Science, 2018, 36(6): 870-879.
[12] 杨继华, 杨风威, 姚阳, 等. CCS水电站引水隧洞TBM断层带卡机脱困技术[J]. 水利水电科技进展, 2017, 37(5): 89-94. YANG Jihua, YANG Fengwei, YAO Yang, et al. Technology for TBM unblocking in a fault zone at CCS Hydropower Station headrace tunnel[J]. Advances in Science and Technology of Water Resources, 2017, 37(5): 89-94.
[13] 杨继华, 苗栋, 杨风威, 等. CCS水电站输水隧洞双护盾TBM穿越不良地质段的处理技术[J]. 资源环境与工程, 2016, 30(3): 539-542. YANG Jihua, MIAO Dong, YANG Fengwei, et al. Treatment technology of crossing unfavorable geological tunnel section by double shield TBM at CCS Hydropower Station water conveyance tunnel[J]. Resources Environment & Engineering, 2016, 30(3): 539-542.
[14] 温森, 徐卫亚. 洞室变形引起的双护盾TBM施工事故风险分析[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3060-3065. WEN Sen, XU Weiya. Risk analysis of double shield TBM construction accident induced by tunnel deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl.1): 3060-3065.
[15] 石怡安, 苏凯, 王美斋, 等. TBM引水隧洞衬砌管片形式研究[J]. 水电能源科学, 2016, 34(4): 103-106. SHI Yian, SU Kai, WANG Meizhai, et al. Study on segment types of TBM diversion tunnel lining[J]. Water Resources and Power, 2016, 34(4): 103-106.
[16] 宁向可, 姜桥, 田鹏. 国产双护盾TBM在兰州市水源地建设工程中的应用[J]. 隧道建设, 2017, 37(增刊1): 149-154. NING Xiangke, JIANG Qiao, TIAN Peng. Application of domestic double-shield TBM to construction of Lanzhou water source project[J]. Tunnel Construction, 2017, 37(Suppl.1): 149-154.
[17] 中华人民共和国水利部. 水利水电工程地质勘察规范:GB50487—2008[S]. 北京: 中国计划出版社, 2009.
[18] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6): 1090-1113. LI Shucai, LIU Bin, SUN Huaifeng, et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1090-1113.
[19] 席锦州, 周捷. TRT6000超前地质预报系统在新铜锣山隧道中的运用[J]. 现代隧道技术, 2012, 49(5): 137-141. XI Jinzhou, ZHOU Jie. Application of the TRT6000 geological prediction system in the construction of the new Tongluoshan tunnel[J]. Modern Tunnelling Technology, 2012, 49(5): 137-141.
[20] 刘斌, 聂利超, 李术才, 等. 三维电阻率空间结构约束反演成像方法[J]. 岩石力学与工程学报, 2012, 31(11): 2258-2268. LIU Bin, NIE Lichao, LI Shucai, et al. 3D electrical resistivity inversion tomography with spatial structural constraint[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2258-2268.
[21] 廖建明. 锦屏二级水电站引水隧洞TBM应对高压大流量地下涌水施工方案[J]. 河北交通职业技术学院学报, 2016, 13(2): 36-39. LIAO Jianming. Construction scheme research on Jinping 2-cascade Hydropower Station diversion tunnel TBM with high pressure and large flow of underground water[J]. Journal of Hebei Jiaotong Vocational & Technical College, 2016, 13(2): 36-39.
[23] 中水东北勘测设计研究有限责任公司. 水利水电地下工程施工组织设计规范: SL 642—2013[S]. 北京: 中国水利水电出版社, 2013.
[1] 焦玉勇, 张为社, 欧光照, 邹俊鹏, 陈光辉. 深埋隧道钻爆法开挖段突涌水灾害的形成机制及防控研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 36-46.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn