Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (3): 71-77    DOI: 10.19952/j.cnki.2096-5052.2023.03.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
锁定回填下沉管隧道地震稳定性
王秋哲1,2,韩瑞2,白笑笑2,赵凯2*
1. 江苏商贸职业学院建筑工程与管理学院, 江苏 南通 226000;2. 南京工业大学岩土工程研究所, 江苏 南京 210000
Seismic stability of immersed tunnel under locked backfill
WANG Qiuzhe1,2, HAN Rui2, BAI Xiaoxiao2, ZHAO Kai2*
1. School of Architectural Engineering and Management, Jiangsu Vocational College of Business, Nantong 226000, Jiangsu, China;
2. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210000, Jiangsu, China
下载:  PDF (6530KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究沉管隧道地震稳定性,基于扩展Masing法则构造土体黏弹塑性应力-应变滞回曲线,将剪切-耦合体积应变增量模型作为Biot动力固结方程中残余孔隙水压力增长的源项,建立砂土液化过程的有效应力分析方法,基于FLAC3D计算平台实现该有效应力分析方法。建立砂质海床-锁定回填-沉管隧道相互作用模型,对地震动作用下锁定回填沉管隧道周围海床的抗液化机理进行研究。结果表明:锁定回填提高了沉管隧道周围海床的抗液化强度,同时增大了沉管隧道的侧摩阻力,最终减小了沉管隧道在地震动作用下的残余上浮量,有效地提高了沉管隧道的地震稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王秋哲
韩瑞
白笑笑
赵凯
关键词:  沉管隧道  地震反应  土-结构相互作用  抗液化措施  有效应力方法    
Abstract: In order to study the seismic stability of immersed tunnel, a viscoelastic-plastic stress-strain hysteresis curve was established based on the extended Masing rule, and the shear-coupled volumetric strain increment model was taken as the source term of the residual pore water pressure growth in Biot dynamic consolidation equation, an effective stress analysis method for sand liquefaction was established. The method was implemented based on the FLAC3D computing platform. The interaction model between sandy seabed and submarine tunnel was established, and the anti-liquefaction mechanism of locked backfilling under seismic loading was studied. The results showed that the locked backfilling increased the anti-liquefaction strength of the seabed and the friction resistance, finally reduced the residual uplift distance, which effectively improved the seismic stability of the immersed tunnel.
Key words:  immersed tunnel    seismic response    soil-structure interaction    anti liquefaction measures    effective stress method
收稿日期:  2022-11-29      发布日期:  2023-09-20     
中图分类号:  TU433  
基金资助: 国家自然科学基金资助项目(51978335,52168044);岩土力学与工程国家重点实验室开放基金资助项目(Z019101)
通讯作者:  赵凯(1982— ),男,安徽滁州人,博士,教授,硕士生导师,主要研究方向为岩土地震工程.    E-mail:  zhaokai@njtech.edu.cn
作者简介:  王秋哲(1994— ),男,江苏南通人,博士,讲师,主要研究方向为海洋岩土工程防灾减灾. E-mail:wangqiuzhe@jsbc.edu.cn.
引用本文:    
王秋哲, 韩瑞, 白笑笑, 赵凯. 锁定回填下沉管隧道地震稳定性[J]. 隧道与地下工程灾害防治, 2023, 5(3): 71-77.
WANG Qiuzhe, HAN Rui, BAI Xiaoxiao, ZHAO Kai. Seismic stability of immersed tunnel under locked backfill. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 71-77.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I3/71
[1] 李心熙, 禹海涛, 李春元, 等. 沉管隧道暗埋段三维大规模地震响应分析[J]. 现代隧道技术, 2021, 58(4):104-108. LI Xinxi, YU Haitao, LI Chunyuan, et al. 3D large-scale seismic response analysis of bored section of an immersed tunnel project[J]. Modern Tunnelling Technology, 2021, 58(4):104-108.
[2] CHENG X S, LI G L, CHEN J, et al. Seismic response of a submarine tunnel under the action of a sea wave[J]. Marine Structures, 2018, 60:122-135.
[3] ZHAO K, ZHU S D, BAI X X, et al. Seismic response of immersed tunnel in liquefiable seabed considering ocean environmental loads[J]. Tunnelling and Underground Space Technology, 2021, 115:104066.
[4] 赵凯, 王秋哲, 王彦臻, 等. 可液化地基地下结构地震反应特征简化有效应力分析[J]. 振动与冲击, 2021, 40(21):39-46. ZHAO Kai, WANG Qiuzhe, WANG Yanzhen, et al. Effects of soil-underground structure interaction on seismic response of liquefiable sit around underground structure[J]. Journal of Vibration and Shock, 2021, 40(21):39-46.
[5] 赵凯, 卢艺静, 王彦臻, 等. 海底盾构隧道结构端部效应及抗减震措施研究[J]. 振动与冲击, 2022, 41(16):33-42. ZHAO Kai, LU Yijing, WANG Yanzhen, et al. Investigations on the spatial end effect of a subsea shield tunnel and the aseismic measures[J]. Journal of Vibration and Shock, 2022, 41(16):33-42.
[6] 崔杰, 陆耀波, 渠建新, 等. 水域沉管隧道地震响应的影响因素分析[J]. 西南交通大学学报, 2020, 55(6):1224-1230. CUI Jie, LU Yaobo, QU Jianxin, et al. Influencing factors analysis of seismic responses of water immersed tunnel[J]. Journal of Southwest Jiaotong University, 2020, 55(6):1224-1230.
[7] 崔杰, 周鹏, 李亚东, 等. 地震作用下海底沉管隧道的动力响应分析[J]. 地震工程与工程振动, 2016, 36(4):96-102. CUI Jie, ZHOU Peng, LI Yadong, et al. Earthquake dynamic response analysis of seabed under the action of immersed tunnel[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4):96-102.
[8] 陆耀波, 崔杰, 渠建新, 等. P波斜入射角对沉管隧道地震响应的影响[J]. 震灾防御技术, 2018, 13(3):562-570. LU Yaobo, CUI Jie, QU Jianxin, et al. Analysis on seismic responses of immersed tunnel under inclined P waves[J]. Technology for Earthquake Disaster Prevention, 2018, 13(3):562-570.
[9] 徐笑然, 赵旭, 杜修力. 港珠澳跨海工程沉管隧道三维地震反应分析[J]. 震灾防御技术, 2016, 11(1):44-54. XU Xiaoran, ZHAO Xu, DU Xiuli. Three-dimensional seismic response analysis of immersed tunnel project in Hong Kong-Zhuhai-Macau[J]. Technology for Earthquake Disaster Prevention, 2016, 11(1):44-54.
[10] 李伟华. 考虑水-饱和土场地-结构耦合时的沉管隧道地震反应分析[J]. 防灾减灾工程学报, 2010, 30(6):607-613. LI Weihua. Seismic response analysis of immersed tube tunnel considering the dynamic interactions between water, stratum and structure influence of liquid parameters on the damage of buried pipeline[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(6):607-613.
[11] ZHOU X J, LIANG Q H, ZHANG Y Y, et al. Three-dimensional nonlinear seismic response of immersed tunnel in horizontally layered site under obliquely incident SV waves[J]. Shock and Vibration, 2019, 2019:1-17.
[12] Itasca Consulting Group Inc.. FLAC3D[Z]. Version 5.0. Minneapolis, US: Itasca, 2004.
[13] CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7):04019022.
[14] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1):12-17. ZHANG Jianmin. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1):12-17.
[15] KIRCA V S O, SUMER B M, FREDSE J. Residual liquefaction of seabed under standing waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 139(6):489-501.
[16] DOBRY R, ABDOUN T. Recent findings on liquefaction triggering in clean and silty sands during earthquakes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143:04017077.
[17] WANG Q Z, BIAN J, HUANG W T, et al. Seabed liquefaction around pipeline with backfilling trench subjected to strong earthquake motions[J]. Sustainability, 2022, 14(19):12825.
[18] ZHAO K, WANG Q Z, ZHUANG H Y, et al. A fully coupled flow deformation model for seismic site response analyses of liquefiable marine sediments[J]. Ocean Engineering, 2022, 251:111144.
[19] ZHAO K, QIN Y, LU Q R, et al. Cyclic resistance of saturated silt under wave-induced non-proportional loading[J]. Applied Ocean Research, 2020, 102:102296.
[1] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[1] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[2] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[3] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[4] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[5] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn