Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (1): 1-13    DOI: 10.19952/j.cnki.2096-5052.2024.01.01
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
压气储能地下内衬洞室建设中若干关键问题研究进展
王者超1,2,李嘉祥2,郝薛将1,2,李明辉1,2,张武1,2,刘杰2
1. 东北大学深部工程与智能技术研究院, 辽宁 沈阳 110819;2. 东北大学资源与土木工程学院, 辽宁 沈阳 110819
A review of several issues for compressed gas energy storage in lined rock cavern
WANG Zhechao1,2, LI Jiaxiang2, HAO Xuejiang1,2, LI Minghui1,2, ZHANG Wu1,2, LIU Jie2
1. Institute of Deep Engineering and Intelligent, Northeastern University, Shenyang 110819, Liaoning, China;
2. School of Resources &
Civil Engineering, Northeastern University, Shenyang 110819, Liaoning, China
下载:  PDF (6838KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 系统介绍地下压气储能技术的发展历史、地下结构组成及其作用,重点讨论压气储能地下内衬式洞室技术的研究进展。针对压气储能地下内衬式洞室存在的极限存储压力、注采气过程中的热力学效应和洞室衬砌密封性能等3个关键问题,系统总结研究进展与当前认识,分析现有研究存在的问题与不足,并对压气储能地下内衬式洞室的未来研究方向提出建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王者超
李嘉祥
郝薛将
李明辉
张武
刘杰
关键词:  压缩空气储能  地下内衬式洞室  极限存储压力  热力学效应  衬砌结构    
Abstract: The development history, cavern composition and role of underground compressed gas energy storage technology were systematically introduced, and the development status of underground lined cavern technology was discussed. This paper systematically analyzed the research progress of three key problems of underground lined caverns, namely ultimate storage pressure, thermodynamic effects in the process of gas injection and production, and sealing performance of cavern lining, summarized the existing research results, pointed out its limitations, and put forward suggestions for the future research direction of underground lined caverns.
Key words:  compressed gas energy storage    lined rock cavern    ultimate pressure    thermodynamics    lining structureReceived:2024-02-01    Revised:2024-03-01    Accepted:2024-03-02    Published:2024-03-20
发布日期:  2024-04-10     
中图分类号:  TE822  
基金资助: 沈阳市科技计划资助项目(22-322-3-17)
作者简介:  王者超(1980— ),男,山东高唐人,教授,博士生导师,博士,教育部“青年长江学者”,主要研究方向为油气地下储存基础理论与关键技术. E-mail:wang.zhechao@hotmail.com
引用本文:    
王者超,李嘉祥,郝薛将,李明辉,张武,刘杰. 压气储能地下内衬洞室建设中若干关键问题研究进展[J]. 隧道与地下工程灾害防治, 2024, 6(1): 1-13.
WANG Zhechao, LI Jiaxiang, HAO Xuejiang, LI Minghui, ZHANG Wu, LIU Jie. A review of several issues for compressed gas energy storage in lined rock cavern. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(1): 1-13.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I1/1
[1] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9. ZHANG Liying, YE Tinglu, XIN Yaozhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
[2] KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage(CAES)in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Applied Energy, 2012, 92: 653-667.
[3] KIM H M. Stability analysis for ground uplift in underground storage caverns for high pressurized gas using Hoek-Brown strength criterion and geological strength index(GSI)[J]. Journal of Korean Society for Rock Mechanics, 2014, 24(4): 289-296.
[4] KIM H M, PARK D, RYU D W, et al. Parametric sensitivity analysis of ground uplift above pressurized underground rock caverns[J]. Engineering Geology, 2012, 135/136: 60-65.
[5] DAMASCENO D R, SPROSS J, JOHANSSON F. Reliability-based design methodology for lined rock cavern depth using the response surface method[C] //Proceedings of the ISRM EUROCK. Trondheim, Norway:ISRM, 2020:13-20.
[6] 徐英俊, 夏才初, 周舒威, 等. 基于极限分析上限定理的压气储能洞室抗隆起破坏准则[J]. 岩石力学与工程学报, 2022, 41(10): 1971-1980. XU Yingjun, XIA Caichu, ZHOU Shuwei, et al. Anti-uplift failure criterion of caverns for compressed air energy storage based on the upper bound theorem of limit analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 1971-1980.
[7] 王者超, 贾文杰, 冯夏庭, 等. 隧洞式内衬储气库极限储存压力解析解[J]. 力学学报, 2023, 55(3): 710-718. WANG Zhechao, JIA Wenjie, FENG Xiating, et al. Analytical solution of limit storage pressures for tunnel type lined gas storage caverns[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 710-718.
[8] PERAZZELLI P, ANAGNOSTOU G. Design issues for compressed air energy storage in sealed underground cavities[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 314-328.
[9] KUSHNIR R, DAYAN A, ULLMANN A. Temperature and pressure variations within compressed air energy storage caverns[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5616-5630.
[10] OSTERLE J F. The thermodynamics of compressed air exergy storage[J]. Journal of Energy Resources Technology, 1991, 113(1): 7-11.
[11] LANGHAM E J. The underground storage of compressed air for gas turbines: a dynamic study on an analogue computer[J]. The Computer Journal, 1965, 8(3): 216-224.
[12] MANSSON L, MARION P, JOHANSSON J. Demonstration of the LRC gas storage concept in Sweden[C] //World Gas Conference.Amsterdam, Netherlands:[s.n.] , 2006: 404-420.
[13] RUTQVIST J, KIM H M, RYU D W, et al. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 71-81.
[14] RAJU M, KUMAR KHAITAN S. Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf Plant[J]. Applied Energy, 2012, 89(1): 474-481.
[15] 周舒威, 夏才初, 张平阳, 等. 地下压气储能圆形内衬洞室内压和温度引起应力计算[J]. 岩土工程学报, 2014, 36(11): 2025-2035. ZHOU Shuwei, XIA Caichu, ZHANG Pingyang, et al. Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2025-2035.
[16] 蒋中明, 李鹏, 赵海斌, 等. 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学, 2020, 41(1): 235-241. JIANG Zhongming, LI Peng, ZHAO Haibin, et al. Experimental study on performance of shallow rock cavern for compressed air energy storage[J]. Rock and Soil Mechanics, 2020, 41(1): 235-241.
[17] 刘澧源, 蒋中明, 王江营, 等. 压气储能电站地下储气库之压缩空气热力学过程分析[J]. 储能科学与技术, 2018, 7(2): 232-239. LIU Liyuan, JIANG Zhongming, WANG Jiangying,et al. Thermodynamic analyses of compressed air energy storage in a underground rock cavern[J]. Energy Storage Science and Technology, 2018, 7(2): 232-239.
[18] YE B, CHENG Z R, YE W M, et al. An analytical solution for analyzing the sealing-efficiency of compressed air energy storage caverns[J]. KSCE Journal of Civil Engineering, 2019, 23(5): 2025-2035.
[19] 夏才初, 徐英俊, 王辰霖, 等. 基于非稳态渗流过程的压气储能洞室空气渗漏率计算[J]. 岩土力学, 2021, 42(7): 1765-1773. XIA Caichu, XU Yingjun, WANG Chenlin, et al. Calculation of air leakage rate in lined cavern for compressed air energy storage based on unsteady seepage process[J]. Rock and Soil Mechanics, 2021, 42(7): 1765-1773.
[20] HORI M, GODA Y, ONISHI H. Mechanical behaviour of surrounding rock mass and new lining structure of air-tight pressure cavern[C] //Proceedings of the 10th ISRM Congress.Sandton, South Afric:ISRM, 2003:35-42.
[21] 周瑜, 夏才初, 赵海斌, 等. 压气储能内衬洞室的空气泄漏率及围岩力学响应估算方法[J]. 岩石力学与工程学报, 2017, 36(2): 297-309. ZHOU Yu,XIA Caichu,ZHAO Haibin, et al. A method for estimating air leakage through inner seals and mechanical responses of the surrounding rock of lined rock caverns for compressed air energy storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 297-309.
[22] 周瑜, 夏才初, 周舒威, 等. 压气储能内衬洞室高分子密封层的气密与力学特性[J]. 岩石力学与工程学报, 2018, 37(12): 2685-2696. ZHOU Yu, XIA Caichu, ZHOU Shuwei, et al. Air tightness and mechanical characteristics of polymeric seals in lined rock caverns(LRCs)for compressed air energy storage(CAES)[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2685-2696.
[23] JIANG Z M, LI P, TANG D, et al. Experimental and numerical investigations of small-scale lined rock cavern at shallow depth for compressed air energy storage[J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2671-2683.
[24] OKUNO T, WAKABAYASHI N, NIIMI K, et al. Advanced natural gas storage system and verification tests of lined rock cavern-ANGAS Project in Japan[J]. International Journal of the JCRM, 2009, 5(2): 95-102.
[25] 蒋中明, 甘露, 张登祥, 等. 压气储能地下储气库衬砌裂缝分布特征及演化规律研究[J]. 岩土工程学报,2024, 46(1): 110-119. JIANG Zhongming, GAN Lu, ZHANG Dengxiang,et al. Distribution characteristics and evolution laws of liner cracks in underground caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 110-119.
[26] GUO C, PAN L, ZHANG K, et al. Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES Plant[J]. Applied Energy, 2016, 181: 342-356.
[27] HE Q, LI G Q, LU C, et al. A compressed air energy storage system with variable pressure ratio and its operation control[J]. Energy, 2019, 169: 881-894.
[28] WANG T T, YANG C H, WANG H M, et al. Debrining prediction of a salt cavern used for compressed air energy storage[J]. Energy, 2018, 147: 464-476.
[29] JANNELLI E, MINUTILLO M, LUBRANO LAVADERA A,et al. A small-scale CAES(compressed air energy storage)system for stand-alone renewable energy power plant for a radio base station: a sizing-design methodology[J]. Energy, 2014, 78: 313-322.
[30] BOUMAN E A, ØBERG M M, HERTWICH E G. Environmental impacts of balancing offshore wind power with compressed air energy storage(CAES)[J]. Energy, 2016, 95: 91-98.
[31] BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
[32] TENGBORG P, JOHANSSON J, DURUP J G. Storage of highly compressed gases in underground lined rock caverns-more than 10 years of experience[C] //Proceedings of the World Tunnel Congress. Iguassu Falls, Brazil: Brazilian Tunnelling Committee(CBT), 2014.
[33] GLAMHEDEN R, CURTIS P. Excavation of a cavern for high-pressure storage of natural gas[J]. Tunnelling and Underground Space Technology, 2006, 21(1): 56-67.
[34] JAPAN GAS Association. Development of advanced natural gas storage technology[J]. Ann Rep, 2008, 2008: 3-9.
[35] PARK D, KIM H M, RYU D W, et al. Probability-based structural design of lined rock caverns to resist high internal gas pressure[J]. Engineering Geology, 2013, 153: 144-151.
[36] 蒋中明, 刘澧源, 李双龙, 等. 压气储能平江试验库受力特性数值研究[J]. 长沙理工大学学报(自然科学版), 2017, 14(4): 62-68. JIANG Zhongming, LIU Liyuan, LI Shuanglong, et al. Numerical study on mechanical characteristics of the Pingjiang Pilot Cavern for compressed air energy storage[J]. Journal of Changsha University of Science & Technology(Natural Science), 2017, 14(4): 62-68.
[37] ZHOU Y, XIA C, ZHANG P, et al. Airleakage from an underground lined rock cavern for compressed air energy storage through a rubber seal[C] //Proceedings of the 13th International Society for Rock Mechanics.Montréal, Canada: CARMA, 2015.
[38] 蒋中明, 李小刚, 万发, 等. 压气储能遂昌地下储气库结构应力变形特性数值研究[J]. 长沙理工大学学报(自然科学版), 2021, 18(3): 79-86. JIANG Zhongming, LI Xiaogang, WAN Fa, et al. Numerical study on stress and deformation characteristics of structure of underground gas storage for CAES in Suichang[J]. Journal of Changsha University of Science & Technology(Natural Science), 2021, 18(3): 79-86.
[39] DAMASCENO D R, SPROSS J, JOHANSSON F. Rock mass response for lined rock caverns subjected to high internal gas pressure[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(1): 119-129.
[40] JONGPRADIST P, TUNSAKUL J, KONGKITKUL W, et al. High internal pressure induced fracture patterns in rock masses surrounding caverns: experimental study using physical model tests[J]. Engineering Geology, 2015, 197: 158-171.
[41] MA Y, RAO Q H, HUANG D Y, et al. A new theoretical model of thermo-gas-mechanical(TGM)coupling field for underground multi-layered cavern of compressed air energy storage[J]. Energy, 2022, 257: 124646.
[42] TUNSAKUL J, JONGPRADIST P, KIM H M, et al. Evaluation of rock fracture patterns based on the element-free Galerkin method for stability assessment of a highly pressurized gas storage cavern[J]. Acta Geotechnica, 2018, 13(4): 817-832.
[43] GHALY A, HANNA A. Ultimate pullout resistance of single vertical anchors[J]. Canadian Geotechnical Journal, 1994, 31(5): 661-672.
[44] 郑颖人, 朱合华, 方正昌, 等. 地下工程围岩稳定分析与设计理论[M]. 北京: 人民交通出版社, 2012.
[45] VEZOLE P. Passive vertical anchors and yield design theory[J]. Revue Française de Géotechnique, 2002(98): 47-62.
[46] KIM H M, RUTQVIST J, JEONG J H, et al. Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage[J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1113-1124.
[47] GEISSBÜHLER L, BECATTINI V, ZANGANEH G, et al. Pilot-scale demonstration of advanced adiabatic compressed air energy storage: part 1: plant description and tests with sensible thermal-energy storage[J]. Journal of Energy Storage, 2018, 17: 129-139.
[48] KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic models for the temperature and pressure variations within adiabatic caverns of compressed air energy storage plants[J]. Journal of Energy Resources Technology, 2012, 134(2): 1.
[49] QUAST P, CROTOGINO F. Initial experience with the compressed-air energy storage(CAES)project of Nordwestdeutsche Kraftwerke AG(NWK)at Huntorf/West Germany[J]. Erdoel-Erdgas-Zeitschrift, 1979, 95(9): 310-314.
[50] ZHOU S W, XIA C C, DU S G, et al. An analytical solution for mechanical responses induced by temperature and air pressure in a lined rock cavern for underground compressed air energy storage[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 749-770.
[51] 蒋中明, 郭菁, 唐栋. 压气储能地下储气库压缩湿空气热力学模型[J]. 储能科学与技术, 2021, 10(2): 638-646. JIANG Zhongming, GUO Jing, TANG Dong. A thermodynamic model of compressed humid air within an underground rock cavern for compressed air energy storage[J]. Energy Storage Science and Technology, 2021, 10(2): 638-646.
[52] ALLEN R D, DOHERTY T J, KANNBERG L D. Summary of selected compressed air energy storage studies[R]. Springfield, USA: Pacific Northwest Laboratory, 1985.
[53] 叶斌, 程子睿, 彭益成. 压气储能洞室气密性影响因素分析[J]. 同济大学学报(自然科学版), 2016, 44(10): 1526-1532. YE Bin, CHENG Zirui, PENG Yicheng. Analysis of influence factors on air tightness of underground cavern for compressed air energy storage[J]. Journal of Tongji University(Natural Science), 2016, 44(10): 1526-1532.
[54] 夏才初, 秦世康, 赵海鸥, 等. 循环热力作用下压气储能洞室钢衬的疲劳耐久性[J]. 同济大学学报(自然科学版), 2023, 51(10): 1564-1573. XIA Caichu, QIN Shikang, ZHAO Haiou, et al. Fatigue durability of steel lining in compressed air energy storage caverns under cyclic thermo-mechanical effects[J]. Journal of Tongji University(Natural Science), 2023, 51(10): 1564-1573.
[55] KIM H M, RUTQVIST J, KIM H, et al. Failure monitoring and leakage detection for underground storage of compressed air energy in lined rock caverns[J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 573-584.
[56] 贾文杰.压气储能内衬洞室热力学特性与稳定性研究[D]. 沈阳:东北大学, 2023. JIA Wenjie. Thermodynamic characteristics and stability of compressed gas energy storage lined cavern[D]. Shenyang: Northeastern University, 2023.
[1] 刘宁,张春生,张传庆,褚卫江,陈平志. 深埋大直径软岩水工隧洞衬砌结构安全性分析[J]. 隧道与地下工程灾害防治, 2019, 1(2): 92-99.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn