Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (1): 73-83    DOI: 10.19952/j.cnki.2096-5052.2024.01.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同洞距下内衬式高压储气库热-力特性分析
阮泉泉1,2,张文1,张彬2*,王其宽2,王汉勋2,时广升2
1.青海大学土木水利学院, 青海 西宁 810016; 2.中国地质大学(北京)工程技术学院, 北京 100083
Thermal and mechanical characteristics analysis of lined high pressure gas storage with different cavern spacing
RUAN Quanquan1,2, ZHANG Wen1, ZHANG Bin2*, WANG Qikuan2, WANG Hanxun2, SHI Guangsheng2
1. College of Civil and Hydraulic Engineering, Qinghai University, Xining 810016, Qinghai, China;
2. School of Engineering and Technology, China University of Geosciences(Beijing), Beijing 100083, China
下载:  PDF (15429KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以安徽某深部硬石膏矿体建造大规模内衬岩洞式储气库为研究背景,采用ABAQUS有限元软件的热-力耦合分析方法,研究深埋洞室不同洞距下多循环充采气过程中关键结构层温度、变形、应力的分布及变化过程,探究不同洞距时围岩塑性区分布规律以及地表变形变化过程。结果表明:增大洞距对主要结构层的温度基本没有影响;洞距小于2倍洞径时,改变洞距对关键结构层的应力和变形、地表位移、混凝土衬砌的拉应力分布和大小以及围岩塑性区的分布有较为明显的影响,储气库间的相互作用较为显著;当洞距增大到2倍洞径后,储气库间的相互作用已经不再明显,此时增大洞距对储气库的稳定性没有明显的增强效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阮泉泉
张文
张彬
王其宽
王汉勋
时广升
关键词:  内衬岩洞  深部硬石膏矿  储气库  热-力耦合  洞室间距    
Abstract: The research background was the construction of large-scale lined cavern gas storage for a deep anhydrite ore body in Anhui province, the thermal-mechanical coupling analysis method based on ABAQUS finite element software was used, established numerical model under the gravity stress field, the deep cavity multi cycle under different cavern spacing was apart from the temperature, the gas extraction in the process of filling the key stratum structure deformation, stress distribution and the change process.The distribution law of surrounding rock plastic zone and the change process of surface deformation under different cavern spacing were investigated.The results showed that the temperature of the main structural layers was not affected by increasing the cavern spacing.When the cavern spacing was less than 2 times the hole diameter, changing the cavern spacing had obvious effects on the stress and deformation of key structural layers, surface displacement, tensile stress distribution and size of concrete lining, and plastic zone distribution of surrounding rock, and the interaction between gas storage was more significant.When the cavern spacing increased to 2 times the cavern diameter, the interaction between gas storage was no longer obvious, and the increase of cavern spacing had no obvious effect on the stability of gas storage.
Key words:  lined rock cavern    deep anhydrite mine    gas storage cavern    thermal-mechanical coupling    cavern spacingReceived:2024-01-02    Revised:2024-03-01    Accepted:2024-03-02    Published:2024-03-20
发布日期:  2024-04-10     
中图分类号:  TU9  
基金资助: 青海省重点研发与转化计划资助项目(2023-QY-209)
作者简介:  阮泉泉(1997— ),男,陕西安康人,博士研究生,主要研究方向为地下能源储存工程地质. E-mail:rqqcugb@163.com. *通信作者简介:张彬(1975— ),男,四川什邡人,教授,博士生导师,博士,主要研究方向为地下能源储存工程地质、地质灾害防治. E-mail:sc_zhb@cugb.edu.cn
引用本文:    
阮泉泉,张文,张彬,王其宽,王汉勋,时广升. 不同洞距下内衬式高压储气库热-力特性分析[J]. 隧道与地下工程灾害防治, 2024, 6(1): 73-83.
RUAN Quanquan, ZHANG Wen, ZHANG Bin, WANG Qikuan, WANG Hanxun, SHI Guangsheng. Thermal and mechanical characteristics analysis of lined high pressure gas storage with different cavern spacing. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(1): 73-83.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I1/73
[1] 孙哲,张彬,陈大伟,等. 花岗岩裂隙岩体油水两相渗流可视化试验及数值模拟研究[J]. 地学前缘, 2023, 30(3): 465-475. SUN Zhe, ZHANG Bin, CHEN Dawei, et al. Two-phase oil/water seepage in fractured granite rock mass:insight fromseepage visualization experiment and numerical simulation[J]. Earth Science Frontiers, 2023, 30(3): 465-475.
[2] 谭茂波, 游锋, 林国庆, 等. 天然气地下储气库类型及建设关键技术论述[J]. 西部探矿工程, 2015, 27(9): 25-28. TAN Maobo, YOU Feng, LIN Guoqing, et al. Discussion on types and key technologies of underground natural gas storage[J]. West-China Exploration Engineering, 2015, 27(9): 25-28.
[3] Sofregaz US Inc. Commercial potential of natural gas storage in lined rock caverns(LRC): topical report SZUS-0005 DE-AC26-97FT34348-01[R]. Houston, USA: Sofregaz US Inc., 1999.
[4] GLAMHEDEN R, CURTIS P. Excavation of a cavern for high-pressure storage of natural gas[J]. Tunnelling and Underground Space Technology, 2006, 21(1): 56-67.
[5] OKUNO T, WAKABAYASHI N, NIIMI K, et al. Advanced natural gas storage system and verification tests of lined rock cavern: ANGAS project in Japan[J].International Journal of the JCRM, 2009, 5(2):95-102.
[6] TUNSAKUL J, JONGPRADIST P, KIM H M, et al. Evaluation of rock fracture patterns based on the element-free Galerkin method for stability assessment of a highly pressurized gas storage cavern[J]. Acta Geotechnica, 2018, 13(4): 817-832.
[7] TUNSAKUL J, JONGPRADIST P, KONGKITKUL W, et al. Investigation of failure behavior of continuous rock mass around cavern under high internal pressure[J]. Tunnelling and Underground Space Technology, 2013, 34: 110-123.
[8] TUNSAKUL J, JONGPRADIST P, SOPARAT P, et al. Analysis of fracture propagation in a rock mass surrounding a tunnel under high internal pressure by the element-free Galerkin method[J]. Computers and Geotechnics, 2014, 55: 78-90.
[9] JONGPRADIST P, TUNSAKUL J, KONGKITKUL W, et al. High internal pressure induced fracture patterns in rock masses surrounding caverns: experimental study using physical model tests[J]. Engineering Geology, 2015, 197: 158-171.
[10] PARK D, KIM H M, RYU D W, et al. Probability-based structural design of lined rock caverns to resist high internal gas pressure[J]. Engineering Geology, 2013, 153: 144-151.
[11] ZIMMELS Y, KIRZHNER F, KRASOVITSKI B. Design criteria for compressed air storage in hard rock[J]. Energy & Environment, 2002, 13(6): 851-872.
[12] 夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析[J]. 岩土力学, 2014,35(5): 1391-1398. XIA Caichu, ZHANG Pingyang, ZHOU Shuwei, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398.
[13] 夏才初,赵海斌,梅松华,等.埋深对压气储能内衬洞室稳定性影响的定量分析[J].绍兴文理学院学报(自然科学),2016,36(9):1-7. XIA Caichu, ZHAO Haibin, MEI Songhua, et al. Quantitative analysis of impact of cover depth on stability of a lined rock cavern for compressed air energy storage[J]. Journal of Shaoxing University(Natural Science), 2016, 36(9): 1-7.
[14] 王其宽, 张彬, 王汉勋, 等. 内衬式高压储气库群布局参数优化及稳定性分析[J]. 工程地质学报, 2020,28(5): 1123-1131. WANG Qikuan, ZHANG Bin, WANG Hanxun, et al. Optimization and stability analysis of layout parameters of lined high-pressure gas storage caverns[J]. Journal of Engineering Geology, 2020, 28(5): 1123-1131.
[15] 蒋中明, 秦双专, 唐栋. 压气储能地下储气库围岩累积损伤特性数值研究[J]. 岩土工程学报, 2020,42(2): 230-238. JIANG Zhongming, QIN Shuangzhuan, TANG Dong. Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 230-238.
[16] JUNG Y B, CHEON D S, PARK E S, et al. Estimation of the characteristics of delayed failure and long-term strength of granite by Brazilian disc test[J]. Journal of Korean Society for Rock Mechanics, 2014, 24(1): 67-80.
[17] 蒋中明, 黄毓成, 刘澜婷, 等. 平江浅埋地下储气实验库力学响应数值分析[J]. 水利水电科技进展, 2019, 39(6):37-43. JIANG Zhongming, HUANG Yucheng, LIU Lanting, et al. Numerical analysis of mechanical response of Pingjiang shallow underground pilot cavern for compressed air storage[J]. Advances in Science and Technology of Water Resources, 2019, 39(6): 37-43.
[18] 蒋中明, 李小刚, 万发, 等. 压气储能遂昌地下储气库结构应力变形特性数值研究[J]. 长沙理工大学学报(自然科学版), 2021, 18(3): 79-86. JIANG Zhongming, LI Xiaogang, WAN Fa, et al. Numerical study on stress and deformation characteristics of structure of underground gas storage for CAES in Suichang[J]. Journal of Changsha University of Science & Technology(Natural Science), 2021, 18(3): 79-86.
[19] KIM H M, LETTRY Y, PARK D, et al. Field evaluation of permeability of concrete linings and rock masses around underground lined rock caverns by a novel in situ measurement system[J]. Engineering Geology, 2012, 137/138: 97-106.
[20] JOHANSSON J. High pressure storage of gas in lined rock caverns: cavern wall design principles [D].Stockholm,Sweden: Division of Soil & Rock Mechanics Royal Institute of Technology, 2003.
[21] JIANG Z M, LI P, TANG D, et al. Experimental and numerical investigationsof small-scale lined rock cavern at shallow depth for compressed air energy storage[J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2671-2683.
[22] 牛键,张彬,王汉勋,等.深部高内压环境下硬石膏质储气库围岩稳定性分析[C] //2018年全国工程地质学术年会会议录.西安:中国地质学会,2018. NIU Jian, ZHANG Bin, WANG Hanxun, et al. Stability analysis of surrounding rock of anhydrite gas storage under deep environment of high internal pressure[C] //Proceedings of the 2018 National Engineering Geology Annual Conference. Xi'an:Geological Society of China, 2018.
[23] 蒋中明,刘澧源,李双龙,等.压气储能平江试验库受力特性数值研究[J].长沙理工大学学报(自然科学版),2017,14(4): 62-68. JIANG Zhongming, LIU Liyuan, LI Shuanglong, et al. Numerical study on mechanical characteristics of Pingjiang Test Reservoir for compressed gas storage[J]. Journal of Changsha University of Science and Technology(Natural Science Edition), 2017, 14(4): 62-68.
[24] 刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999.
[25] 蒋中明,刘澧源,赵海斌,等.地下储气库热力耦合数值分析动态边界条件研究[J].岩土力学,2019,40(3):1149-1157. JIANG Zhongming, LIU Liyuan, ZHAO Haibin, et al. Study on dynamic boundary conditions for thermodynamic coupling numerical analysis of underground gas storage [J]. Rock and Soil Mechanics, 2019, 40(3):1149-1157.
[26] 张新敏,蒋中明,刘澧源,等.岩穴储气库的天然气存储能力分析[J].储能科学与技术,2021,10(5): 1624-1630. ZHANG Xinmin, JIANG Zhongming, LIU Liyuan, et al. Analysis of natural gas storage capacity of rock caverns [J]. Energy Storage Science and Technology, 2021, 10(5): 1624-1630.
[1] 马洪岭, 梁孝鹏, 赵凯, 施锡林, 马华兴, 莫磊, 杨春和. 山东泰安盐穴储气库地质可行性分析[J]. 隧道与地下工程灾害防治, 2022, 4(2): 19-27.
[2] 尹洪武, 朱耿德, 朱耿刚, 葛鑫博. 超深地层盐岩单轴压缩损伤演化过程分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 53-60.
[3] 王者超,李崴,刘杰,郭家繁,张宇鹏. 地下储气库发展现状与安全事故原因综述[J]. 隧道与地下工程灾害防治, 2019, 1(2): 49-58.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn