Abstract: To address the issues of excessive air volume and insufficient targeting effectiveness in traditional subway tunnel make-up air systems, a novel composite ventilation method was proposed. This approach integrated side-supply in the breathing zone with bottom-supply ventilation based on occupant evacuation behavior patterns, with the objective of investigating its effectiveness in controlling smoke dispersion in evacuation passages. A physical model of a metro tunnel section was constructed using numerical simulation. Comparative analysis was conducted on the distribution patterns of CO mass concentration, temperature, and visibility in evacuation pathways under four distinct ventilation conditions: natural air replenishment, breathing-zone lateral air supply, bottom air supply, and combined ventilation modes.The study found that natural make-up air had the worst effect on controlling fire smoke in the evacuation channel, with visibility, CO mass concentration, and temperature all failing to meet personnel evacuation requirements.Breathing zone side-feeding make-up air could control the CO mass concentration in the evacuation channel below 62 mg/m3, but the mixing of make-up air and smoke caused the average temperature in the evacuation channel to reach 227 ℃, which did not satisfy the requirements for safe personnel evacuation. For bottom make-up air, the average temperature in the evacuation channel exceeded 300 ℃, and the average CO mass concentration was 100 mg/m3, both higher than the safety parameters required for personnel evacuation. When the combined make-up air of breathing zone side-feeding and bottom-feeding was applied, with the air volume ratio of side-feeding to bottom-feeding being 6∶1 and the corresponding wind speeds being 1.8 m/s and 0.3 m/s respectively, the CO mass concentration in the evacuation channel was 34.6 mg/m3, the temperature was 59.2 ℃, and the visibility was 18.6 m—all meeting the standards for safe personnel evacuation. The combined make-up air method of side-feeding in the breathing zone and bottom-feeding can effectively control fire smoke in metro tunnel evacuation channels, providing a theoretical basis for precise make-up air design in underground spaces aimed at ensuring personnel safety.
雷文君,郭丽丽,赵旭明,邰传民,齐悦. 补风方式对地铁隧道火灾烟气控制效果的研究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 31-41.
LEI Wenjun, GUO Lili, ZHAO Xuming, TAI Chuanmin, QI Yue. Study on the effect of makeup air supplementation on fire smoke control in subway tunnel. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(2): 31-41.
[1] 侯秀芳, 冯晨, 燕汉民, 等. 2024年中国内地城市轨道交通运营线路概况 [J]. 都市快轨交通, 2025, 38(1): 13-19. HOU Xiufang, FENG Chen, YAN Hanmin, et al. Overview of urban rail transit operating lines in mainland China in 2024 [J]. Urban Rapid Transit, 2025, 38(1): 13-19. [2] 张莹. 地铁运营安全风险本体知识库的构建与应用研究[D]. 徐州: 中国矿业大学, 2022. ZHANG Ying. Construction and application research of subway operation safety risk ontology knowledge base[D]. Xuzhou: China University of Mining and Technology, 2022. [3] LEI W J, ZHENG Z J, RONG C L, et al. Study on fire smoke control in evacuation passageways on the top floor of an atrium involving breathing zones combined with underfloor makeup air supplementation[J]. Safety Science, 2022, 153: 105807. [4] 端木祥玲, 詹子娜, 李磊, 等. 中庭式地铁车站不同补风方式对排烟效率影响分析[J]. 消防科学与技术, 2022, 41(3): 343-346. DUANMU Xiangling, ZHAN Zina, LI Lei, et al. Research on the efficiency of smoke exhausting with diverse air make-up ways in atrium subway station[J]. Fire Science and Technology, 2022, 41(3): 343-346. [5] 何龙. 一侧出口受限的地下隧道自然通风散热数值研究[J]. 制冷与空调(四川), 2023, 37(3): 382-386. HE Long. Numerical study on natural ventilation and heat dissipation of underground tunnels with limited exits on one side[J]. Refrigeration and Air Conditioning, 2023, 37(3): 382-386. [6] 李涛, 杨云萍, 米春, 等. 基于纵向通风与空气幕协同作用下的分岔隧道最高温度 [J]. 西南交通大学学报, 2025, 60(1): 103-110. LI Tao, YANG Yunping, MI Chun, et al. Maximum temperature of bifurcated tunnel based on the synergistic effect of longitudinal ventilation and air curtain [J]. Journal of Southwest Jiaotong University, 2025, 60(1): 103-110. [7] 宋英华, 夏小雨, 雷鹏, 等. 纵向通风下卜型分岔隧道火灾烟气流动特性的数值模拟分析 [J]. 中国安全生产科学技术, 2023, 19(12): 46-51. SONG Yinghua, XIA Xiaoyu, LEI Peng, et al. Numerical simulation analysis of smoke flow characteristics of fire in Bu-type bifurcated tunnels under longitudinal ventilation [J]. China Safety Production Science and Technology, 2023, 19(12): 46-51. [8] 曹淑超, 李阳, 倪捷, 等. 视野受限定量控制条件下疏散人员运动特性研究 [J]. 安全与环境学报, 2023, 23(5): 1636-1642. CAO Shuchao, LI Yang, NI Jie, et al. Motion characteristics of evacuees under limited field of view and quantitative control conditions[J]. Journal of Safety and Environment, 2023, 23(5): 1636-1642. [9] 吴鑫, 林华李, 张龙梅, 等. 视野受限情况下行人疏散行为特征试验研究[J]. 中国安全生产科学技术, 2023, 19(10): 200-206. WU Xin, LIN Huali, ZHANG Longmei, et al. Experimental study on characteristics of pedestrian evacuation behavior under limited visual field[J]. Journal of Safety Science and Technology, 2023, 19(10): 200-206. [10] DONG S Y, HUANG P, WANG W. An optimization method for evacuation guidance under limited visual field[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 607: 128221. [11] 王方超, 张铎, 陈长坤, 等. 横通道通风对隧道火灾烟气蔓延影响的数值模拟研究[J]. 中国安全生产科学技术, 2023, 19(3): 108-114. WANG Fangchao, ZHANG Duo, CHEN Changkun, et al. Numerical simulation study on influence of cross-passage ventilation on spread of tunnel fire smoke[J]. Journal of Safety Science and Technology, 2023, 19(3): 108-114. [12] 李宇辉, 费瑞振. 地铁隧道火灾烟气蔓延和人员疏散效率研究[J]. 铁道科学与工程学报, 2022, 19(9): 2776-2784. LI Yuhui, FEI Ruizhen. Study on smoke spreading and evacuation efficiency in subway tunnel fire[J]. Journal of Railway Science and Engineering, 2022, 19(9): 2776-2784. [13] LEI W J, QI Y, ZHANG X Y, et al. Study on influence of breathing zone combined with underfloor makeup air supplement on smoke exhaust of road tunnel fire[J]. E3S Web of Conferences, 2022, 356: 02042. [14] LEI W J, QI Y, LI A G, et al. Effects of makeup air on atrium smoke conditions: a review[J]. Indoor and Built Environment, 2023, 32(1): 66-84. [15] 李炎锋, 苏枳赫. 地铁区间隧道火灾热环境演化与疏散安全研究综述[J]. 隧道与地下工程灾害防治, 2024, 6(2): 1-12. LI Yanfeng, SU Zhihe. A review of thermal environment evolution and evacuation safety fire of metro tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 1-12. [16] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验疫总局. 建筑防烟排烟系统技术标准: GB51251—2017[S]. 北京: 中国计划出版社, 2017. [17] 李俊梅, 涂登凯, 李炎锋, 等. 隧道火灾中重点排烟的排烟量及排烟口布置 [J]. 北京工业大学学报, 2023, 49(3): 363-370. LI Junmei, TU Dengkai, LI Yanfeng, et al. Smoke volume and smoke vent arrangement for focused smoke exhaust in tunnel fires [J]. Journal of Beijing Institute of Technology, 2023, 49(3): 363-370. [18] MCGRATTAN K B, FLOYD J E, HOSTIKKA S, et al. Fire dynamics simulator(version 5): user's guide[M]. Gaithersburg, USA: National Institute of Standards and Technology, 2007. [19] 谷思念. 地铁隧道火灾温度场分布及基于热力耦合的结构损伤研究[D]. 徐州: 中国矿业大学, 2016. GU Sinian. Study on the temperature field of subway tunnel fires and structural damage based on thermal-mechanical coupling method [D]. Xuzhou: China University of Mining and Technology, 2016. [20] HU L H, FONG N K, YANG L Z, et al. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: fire dynamics simulator comparisons with measured data[J]. Journal of Hazardous Materials, 2007, 140(1): 293-298. [21] 郑展江. 基于中庭火灾烟气流动特点的个性化补风系统风量匹配的研究[D]. 济南: 山东建筑大学, 2023. ZHENG Zhanjiang. Study on air volume matching of personalized air supplement system based on smoke flow characteristics in atrium fire[D]. Jinan: Shandong Jianzhu University, 2023. [22] 刘彦彤, 田鑫, 孙勇, 等. 基于NFPA 130: 2023《固定导轨交通和客运铁路系统标准》的地铁列车人员疏散模型 [J]. 城市轨道交通研究, 2025, 28(2): 9-13. LIU Yantong, TIAN Xin, SUN Yong, et al. Personnel evacuation model for metro trains based on NFPA 130: 2023 standard for fixed guideway traffic and passenger rail systems [J]. Urban Rail Transport Research, 2025, 28(2): 9-13. [23] 李宇辉, 费瑞振, 李芳. 城市轨道交通超长隧道双车追踪模式下火灾烟气控制与人员安全疏散研究 [J]. 城市轨道交通研究, 2024, 27(8): 100-107. LI Yuhui, FEI Ruizhen, LI Fang. Fire smoke control and personnel evacuation under dual-train tracking mode in urban rail transit ultra-long tunnel[J]. Urban Rail Transit, 2024, 27(8): 100-107. [24] CHEN Z, DONG C, ZHAO S L, et al. Fire evacuation of train emergency rescue station in an extra-long railway tunnel[J]. Tunnelling and Underground Space Tech-nology, 2024, 152: 105954.