Mechanism of splitting failure and stability analysis of the loosening zone in deep surrounding rock
GUO Wei1, CHEN Haoxiang2*, LI Jie1, XU Tianhan1, LI Chao1, JI Yuguo1
1. State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, Army Engineering University of PLA, Nanjing 210007, Jiangsu, China; 2. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Abstract: The deformation control mechanisms in underground caverns were investigated through systematic analysis of splitting phenomena within the surrounding rock's loosened zone. An elastic-brittle-plastic constitutive model was developed to formulate stress and deformation field expressions, enabling the derivation of a quantitative characterization for loosened zone dimensions. Stress relaxation mechanisms at rock mass discontinuities were analyzed, leading to systematic characterization of deformation and splitting processes within the loosened zone. Clear logical relationships between shear failure and splitting failure mechanisms were established, with a stress criterion for splitting failure in the loosened zone being proposed. Critical external load conditions were identified for four typical failure modes: shear failure, shear fragmentation, slab fracturing, and splitting in the maximum support pressure zone. Key findings revealed that radial unloading induced localized tensile stress fields in surrounding rock. Plastic shear deformation was confirmed as a prerequisite for internal rock mass splitting failure. A positive correlation was observed between modulus differences during loading-unloading cycles and splitting susceptibility. Comparative analysis demonstrated that the occurrence threshold for shear fragmentation significantly exceeded that of splitting failure, suggesting limited practical occurrence of shear fragmentation in engineering applications. These findings provide theoretical foundations for predicting and controlling surrounding rock stability in underground excavation projects.
郭纬,陈昊祥,李杰,徐天涵,李超,纪玉国. 深部围岩松动圈劈裂破坏机理探究[J]. 隧道与地下工程灾害防治, 2025, 7(2): 42-50.
GUO Wei, CHEN Haoxiang, LI Jie, XU Tianhan, LI Chao, JI Yuguo. Mechanism of splitting failure and stability analysis of the loosening zone in deep surrounding rock. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(2): 42-50.
[1] 尤明庆. 岩石的力学性质[M]. 北京: 地质出版社, 2007: 22-26. [2] 陈宗基. 地下巷道长期稳定性的力学问题[J]. 岩石力学与工程学报, 1982(1): 1-20. TAN Tjongkie. The mechanical problems for the long-term stability of underground galleries[J]. Chinese Journal of Rock Mechanics and Engineering, 1982(1): 1-20. [3] 王明洋, 徐天涵, 邓树新, 等. 深部硐室长期稳定性的两个力学问题[J]. 爆炸与冲击, 2021, 41(7): 3-17. WANG Mingyang, XU Tianhan, DENG Shuxin, et al. Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels[J]. Explosion and Shock Waves, 2021, 41(7): 3-17. [4] SHEMYAKIN E I, KURLENYA M V, OPARIN V N, et al. Zonal disintegration of rocks around underground workings. IV. practical applications[J]. Soviet Mining, 1989, 25(4): 297-302. [5] 钱七虎, 李树忱. 深部岩体工程围岩分区破裂化现象研究综述[J]. 岩石力学与工程学报, 2008, 27(6): 1278-1284. QIAN Qihu, LI Shuchen. A review of research on zonal disintegration phenomenon in deep rock mass engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1278-1284. [6] 钱七虎. 深部岩体工程响应的特征科学现象及“深部” 的界定[J]. 东华理工学院学报, 2004, 27(1): 1-5. QIAN Qihu. The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness[J]. Journal of East China Institute of Technology, 2004, 27(1): 1-5. [7] 王明洋, 宋华, 郑大亮, 等. 深部巷道围岩的分区破裂机制及“深部” 界定探讨[J]. 岩石力学与工程学报, 2006, 25(9): 1771-1776. WANG Mingyang, SONG Hua, ZHENG Daliang, et al. On mechanism of zonal disintegration within rock mass around deep tunnel and definition of "deep rock engineering"[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1771-1776. [8] 罗勇, 宫凤强. 深部硬岩巷道围岩板裂破坏试验研究进展与展望[J]. 煤炭科学技术, 2022, 50(6): 46-60. LUO Yong, GONG Fengqiang. Research progress and prospect of laboratory test of rock spalling in deep hard rock roadway[J]. Coal Science and Technology, 2022, 50(6): 46-60. [9] 卢海峰, 魏爱超, 邹星辰. 层状板裂组合结构岩体力学特性试验研究[J]. 岩石力学与工程学报, 2022, 41(增刊2): 3282-3293. LU Haifeng, WEI Aichao, ZOU Xingchen. Experimental study on mechanical properties of layered slab-crack composite structure rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl.2): 3282-3293. [10] 常新科, 吴顺川, 程海勇, 等. 高应力巷道围岩板裂-岩爆模拟试验及声发射频域研究[J]. 采矿与岩层控制工程学报, 2024, 6(6): 101-114. CHANG Xinke, WU Shunchuan, CHENG Haiyong, et al. Experimental study and acoustic emission frequency domain analysis of spalling-rockburst in high-stress tunnel surrounding rock[J]. Journal of Mining and Strata Control Engineering, 2024, 6(6): 101-114. [11] 司雪峰, 张子龙, 宫凤强. 深部直墙拱形巷道围岩板裂破坏的试验研究[J]. 采矿与岩层控制工程学报, 2024, 6(4): 115-129. SI Xuefeng, ZHANG Zilong, GONG Fengqiang. Experimental study on spalling failure of rock in deep arch roadway with vertical walls[J]. Journal of Mining and Strata Control Engineering, 2024, 6(4): 115-129. [12] 陈绍杰, 冯帆, 李夕兵, 等. 复杂开采条件下深部硬岩板裂化破坏试验与模拟研究进展和关键问题[J]. 中国矿业大学学报, 2023, 52(5): 868-888. CHEN Shaojie, FENG Fan, LI Xibing, et al. Research progress and key issues of laboratory test and numerical simulation for slabbing failure in hard rock under complex mining conditions[J]. Journal of China University of Mining & Technology, 2023, 52(5): 868-888. [13] STACEY T R. A simple extension strain criterion for fracture of brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(6): 469-474. [14] 浦海, 聂韬译. 基于雁型裂纹模型的高地应力巷道劈裂破坏机理分析[J]. 采矿与安全工程学报, 2011, 28(4): 585-588. PU Hai, NIE Taoyi. Analysis on the splitting failure mechanism of high-stress roadway based on echelon crack model[J]. Journal of Mining & Safety Engineering, 2011, 28(4): 585-588. [15] 王明洋, 范鹏贤, 李文培. 岩石的劈裂和卸载破坏机制[J]. 岩石力学与工程学报, 2010, 29(2): 234-241. WANG Mingyang, FAN Pengxian, LI Wenpei. Mechanism of splitting and unloading failure of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 234-241. [16] 范鹏贤, 王明洋, 钱七虎. 深部非均匀岩体卸载拉裂的时间效应和主要影响因素[J]. 岩石力学与工程学报, 2010, 29(7): 1389-1396. FAN Pengxian, WANG Mingyang, QIAN Qihu. Time effect and main influence factors of unloading splitting of deep-seated rock with nonuniformities[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1389-1396. [17] 董正东, 田浩源. 大理岩常规三轴压缩试验研究[J]. 土工基础, 2021, 35(5): 635-639. DONG Zhengdong, TIAN Haoyuan. Experimental study on the conventional triaxial compression of marble rock samples[J]. Soil Engineering and Foundation, 2021, 35(5): 635-639. [18] 杨圣奇, 徐卫亚, 苏承东. 大理岩三轴压缩变形破坏与能量特征研究[J]. 工程力学, 2007, 24(1): 136-142. YANG Shengqi, XU Weiya, SU Chengdong. Study on the deformation failure and energy properties of marble specimen under triaxial compression[J]. Engineering Mechanics, 2007, 24(1): 136-142. [19] 吕龙龙, 廖红建, 伏映鹏, 等. 干湿状态对红层软岩脆延特性影响的试验研究[J]. 西安交通大学学报, 2021, 55(4): 162-171. LÜ Longlong, LIAO Hongjian, FU Yingpeng, et al. Experimental research on effects of dry and natural states on brittle-ductile transition property for red-bed soft rock[J]. Journal of Xi'an Jiaotong University, 2021, 55(4): 162-171. [20] 胡坤, 赵伦洋, 李鹏飞, 等. 深部硬岩脆-延性转化行为的细观损伤模型[J]. 工程科学与技术, 2024, 56(3): 11-20. HU Kun, ZHAO Lunyang, LI Pengfei, et al. Micromechanical damage model for the brittle-ductile transition in deep hard rock[J].Advanced Engineering Sciences, 2024, 56(3): 11-20. [21] 李春林. 岩石锚杆加固原理与应用[M]. 北京: 科学出版社, 2021: 1-2. [22] 郑颖人. 地下工程围岩稳定分析与设计理论[M]. 北京: 人民交通出版社, 2024: 51-59. [23] 任子健, 王涛, 吴顺川, 等. 基于Hoek-Brown强度准则的软岩隧洞稳定性分析及应用[J]. 岩石力学与工程学报, 2024, 43(增刊2): 3779-3791. REN Zijian, WANG tao, WU Shunchuan, et al. Stability analysis and application of soft rock tunnel based on Hoek-Brown strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(Suppl.2): 3779-3791. [24] 陈福江, 赖万松, 刘金刚, 等. 基于D-P准则三阶段蠕变模型的圆形隧洞黏弹塑性解[J]. 现代隧道技术, 2024, 61(4): 105-111. CHEN Fujiang, LAI Wansong, LIU Jingang, et al. Viscoelastic-plastic solution for circular tunnels based on the three-stage creep model with the D-P criterion[J]. Modern Tunnelling Technology, 2024, 61(4): 105-111. [25] SHEMYAKIN E I. Two problems in rock mechanics arising out of the working of deep ore or coal deposits[J]. Soviet Mining, 1975, 11(6): 632-646. [26] 陈昊祥, 王明洋, 戚承志, 等. 深部圆形巷道围岩能量的调整机制及平衡关系[J]. 岩土工程学报, 2020, 42(10): 1849-1857. CHEN Haoxiang, WANG Mingyang, QI Chengzhi, et al. Mechanism of energy adjustment and balance of rock masses near a deep circular tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1849-1857. [27] 张绪涛, 张强勇, 向文, 等. 深部层状节理岩体分区破裂模型试验研究[J]. 岩土力学, 2014, 35(8): 2247-2254. ZHANG Xutao, ZHANG Qiangyong, XIANG Wen, et al. Model test study of zonal disintegration in deep layered jointed rock mass[J]. Rock and Soil Mechanics, 2014, 35(8): 2247-2254. [28] 洛锋, 杨本生, 孙利辉, 等. 高垂直应力状态下巷道围岩分区破坏特征试验研究[J]. 采矿与安全工程学报, 2012, 29(4): 497-504. LUO Feng, YANG Bensheng, SUN Lihui, et al. Experimental research on the failure characteristics of surrounding rock under high vertical ground stress[J]. Journal of Mining & Safety Engineering, 2012, 29(4): 497-504. [29] 顾金才, 顾雷雨, 陈安敏, 等. 深部开挖洞室围岩分层断裂破坏机制模型试验研究[J]. 岩石力学与工程学报, 2008, 27(3): 433-438. GU Jincai, GU Leiyu, CHEN Anmin, et al. Model test study on mechanism of layered fracture within surrounding rock of tunnels in deep stratum[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 433-438. [30] 袁亮, 顾金才, 薛俊华, 等. 深部围岩分区破裂化模型试验研究[J]. 煤炭学报, 2014, 39(6): 987-993. YUAN Liang, GU Jincai, XUE Junhua, et al. Model test research on the zonal disintegration in deep rock[J]. Journal of China Coal Society, 2014, 39(6): 987-993. [31] 戚承志, 钱七虎. 岩体动力变形与破坏的基本问题[M]. 北京: 科学出版社, 2009: 209-213. [32] RODIONOV V N, SIZOV I A. Model of a rigid body with dissipative structure for geomechanics[J]. Soviet Mining, 1988, 24(6): 491-501. [33] SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, part 1: data of in situ observations[J]. Soviet Mining, 1986, 22(3): 157-168. [34] 宫凤强, 罗勇, 司雪峰, 等. 深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J]. 岩石力学与工程学报, 2017, 36(7): 1634-1648. GONG Fengqiang, LUO Yong, SI Xuefeng, et al. Experimental modelling on rockburst in deep hard rock circular tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1634-1648.