Triaxial compression behavior of sandstone under temperature influence: loading characteristics, shear deformation, and development of prediction software
ZHONG Hao1, CAI Xianqing1, SUN Hao1, KONG Qingxuan2, ZHANG Yongping3
1. Sichuan Provincial Transportation Survey and Design Research Institute Co., Ltd., Chengdu 610031, Sichuan, China; 2. Chengdu Branch of Sichuan Chengmian Cangba Expressway Company Limited, Chengdu 610213, Sichuan, China; 3. Sichuan Railway Construction Co., Ltd., Chengdu 610031, Sichuan, China
Abstract: This study conducted triaxial compression tests on sandstone under temperatures of 20-150 ℃ and confining pressures of 5-35 MPa and systematically revealed the coupled effects of temperature and confining pressure on the loading characteristics, shear deformation, and failure modes of sandstone. The results showed that in the low-temperature range(20-60 ℃), sandstone predominantly exhibits brittle failure, with the shear deformation band angle significantly decreasing as confining pressure increases(64.7°→58.3°). In the high-temperature range(≥120 ℃), plastic yielding characteristics were intensified, and at 150 ℃, the increase in confining pressure(5-35 MPa)resulted in a 15.3° reduction in the shear angle. The failure mode transitions from tensile failure under low confining pressure to shear failure under high confining pressure, with elevated temperatures increasing the roughness of failure surfaces. Compared to the Mogi-Coulomb, Drucker-Prager, and Tresca criteria, the modified Lade criterion was found to demonstrate optimal fitting performance(R2≥0.97)by incorporating deviatoric stress invariants and the Lode angle parameter. Based on this criterion, a prediction model for shear deformation band angles was developed. The developed multi-temperature discrete prediction software, integrated with PyCharm and Gradio, achieved high-precision predictions within 0.8 seconds(absolute error: 2.5°, R2=0.92). The output parameters were designed to be embedded into finite element platforms, providing theoretical and practical tools for stability assessments of high-stress tunnels and deep rock mass engineering.
钟浩,蔡先庆,孙浩,孔庆轩,张永平. 温度影响下砂岩三轴压缩行为:加荷特性、剪切变形及预测软件研发[J]. 隧道与地下工程灾害防治, 2025, 7(2): 81-95.
ZHONG Hao, CAI Xianqing, SUN Hao, KONG Qingxuan, ZHANG Yongping. Triaxial compression behavior of sandstone under temperature influence: loading characteristics, shear deformation, and development of prediction software. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(2): 81-95.
[1] 邹飞, 李海波, 周青春, 等. 岩石节理倾角和间距对隧道掘进机破岩特性影响的试验研究[J]. 岩土力学, 2012, 33(6): 1640-1646. ZOU Fei, LI Haibo, ZHOU Qingchun, et al. Experimental study of influence of joint space and joint angle on rock fragmentation by TBM disc cutter[J]. Rock and Soil Mechanics, 2012, 33(6): 1640-1646. [2] 荣冠, 黄凯, 周创兵, 等. 岩石节理法向加载非线性变形本构模型研究[J]. 中国科学: 技术科学, 2012, 42(4): 402-414. [3] 孙清佩, 张志镇, 杜雷鸣, 等. 层理倾角对岩石力学与声发射特征的影响研究[J]. 金属矿山, 2017(2): 7-13. SUN Qingpei, ZHANG Zhizhen, DU Leiming, et al. Effect of bedding angle on mechanical and acoustic emission characteristics of layered rock[J]. Metal Mine, 2017(2): 7-13. [4] 杨圣奇, 杨景, 孙博文, 等. 基于围压因素的分级应力扰动下砂岩损伤破裂特性试验研究[J]. 岩石力学与工程学报, 2024, 43(3): 542-555. YANG Shengqi, YANG Jing, SUN Bowen, et al. Experimental study on damage and fracture characteristics of sandstone under graded stress disturbance based on confining pressure factor[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(3): 542-555. [5] 赵娜, 卫帅, 王来贵, 等. 含不同倾角单裂隙岩石单轴压缩破裂演化过程分析[J]. 实验力学, 2024, 39(4): 518-528. ZHAO Na, WEI Shuai, WANG Laigui, et al. Analysis of fracture evolution process of single fractured rock mass based on uniaxial compression[J]. Journal of Experimental Mechanics, 2024, 39(4): 518-528. [6] 高新强, 杨腾杰, 戴尚坤, 等. 深埋高地应力TBM隧道岩爆倾向性影响因素分析[J]. 铁道工程学报, 2024, 41(11): 59-65. GAO Xinqiang, YANG Tengjie, DAI Shangkun, et al. Analysis of influencing factors of rockburst tendency of deep buried TBM tunnel with high ground stress[J]. Journal of Railway Engineering Society, 2024, 41(11): 59-65. [7] 王刚, 郑金叶, 刘义鑫, 等. 高温后砂岩真三轴加卸载力学特性演化规律研究[J]. 煤炭科学技术, 2025, 53(2):124-136. WANG Gang, ZHENG Jinye, LIU Yixin, et al. Study on evolution law of mechanical properties of sandstone under true triaxial loading and unloading after high temperature[J]. Coal Science and Technology, 2025, 53(2):124-136. [8] HUANG Linqi, LIU Maolin, WANG Zhaowei, et al. Temperature effects on the failure of deep circular tunnel under true-triaxial compression[J]. Journal of Central South University, 2024, 31(9): 3119-3141. [9] WANG X P, WANG L H, ZHAO B Y, et al. Experimental study on mechanical properties of gas storage sandstone and its damage under temperature and pressure[J]. Frontiers in Earth Science, 2022, 10: 905642. [10] YANG S Q, HU B, TIAN W L. Effect of high temperaturedamage on triaxial mechanical failure behavior of sandstone specimens containing a single fissure[J]. Engineering Fracture Mechanics, 2020, 233: 107066. [11] 吕洪淼, 刘文博. 考虑温度和围压耦合作用下岩石蠕变模型的建立[J]. 中国测试, 2023, 49(7): 41-47. LÜ Hongmiao, LIU Wenbo. Establishment of rock creep model considering the coupling of temperature and confining pressure[J].China Measurement & Test, 2023, 49(7): 41-47. [12] 李学成, 冯增朝, 郭纪哲, 等. 温度和应力对砂岩渗透率影响规律研究[J]. 煤炭科学技术, 2019, 47(4): 96-100. LI Xuecheng, FENG Zengchao, GUO Jizhe, et al. Study on influence laws of temperature and stress on sandstone permeability[J]. Coal Science and Technology, 2019, 47(4): 96-100. [13] 左金涛, 卓莉, 刘怀忠, 等. 压剪荷载作用下红砂岩裂纹尖端应变分布特征及起裂机理研究[J]. 实验力学, 2024, 39(2): 195-207. ZUO Jintao, ZHUO Li, LIU Huaizhong, et al. Study on strain distribution characteristics and fracture initiation mechanism at crack tip of red sandstone under compressive shear load[J]. Journal of Experimental Mechanics, 2024, 39(2): 195-207. [14] 王磊, 张睿, 杨栋, 等. 实时高温富有机质页岩变角剪切力学特性及应变场演化研究[J]. 岩土力学, 2023, 44(9): 2579-2592. WANG Lei, ZHANG Rui, YANG Dong, et al. Mechanical properties and strain field evolution of organic-rich shale with variable angle shear at real-time high-temperature[J]. Rock and Soil Mechanics, 2023, 44(9): 2579-2592. [15] DU K, LI X F, WANG S Y, et al. Compression-shear failureproperties and acoustic emission(AE)characteristics of rocks in variable angle shear and direct shear tests[J]. Measurement, 2021, 183: 109814. [16] 陈昊祥, 王明洋, 靳天伟, 等. 岩石结构面破坏模式与剪切强度关系初探[J/OL]. 长江科学院院报, 2024-08-30. https://kns.cnki.net/kcms/detail/42.1171.TV.20240829.1337.004.html CHEN Haoxiang, WANG Mingyang, JIN Tianwei, et al. Preliminary study on the relationship between failure mode and shear strength of rock structural plane[J/OL]. Journal of Yangtze River Scientific Research Institute, 2024-08-30. https://kns.cnki.net/kcms/detail/42.1171.TV.20240829.1337.004.html [17] 长江水利委员会长江科学院. 水利水电工程岩石试验规程:SL/T 264—2020[S]. 北京:中国水利水电出版社, 2020. [18] 林志南, 冯世宏, 王家全, 等. 石英砂岩三轴剪切力学特性及裂隙面形态特征[J]. 工程科学与技术, 2024, 56(4): 161-172. LIN Zhinan, FENG Shihong, WANG Jiaquan, et al. Mechanical properties and fracture surface morphology of quartz sandstone under triaxial shear[J]. Advanced Engineering Sciences, 2024, 56(4): 161-172. [19] HUANG S B, HE Y B, LIU G F, et al. Effect of water content on the mechanical properties and deformation characteristics of the clay-bearing red sandstone[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1767-1790. [20] 王云飞, 王立平, 焦华喆, 等. 不同围压下砂岩的变形力学特性与损伤机制[J]. 煤田地质与勘探, 2015, 43(4): 63-68. WANG Yunfei, WANG Liping, JIAO Huazhe, et al. Mechanical charactristics of deformation and damage mechanism of sandstone under different confining pressure[J]. Coal Geology & Exploration, 2015, 43(4): 63-68. [21] 马瑾, SHERMAN S I, 郭彦双. 地震前亚失稳应力状态的识别——以5°拐折断层变形温度场演化的实验为例[J]. 中国科学: 地球科学, 2012, 42(5): 633-645. MA Jin, SHERMAN S I, GUO Yanshuang. Identification of sub-instability stress state before earthquake: taking the experiment of deformation and temperature field evolution of 5-turn fracture layer as an example[J]. Scientia Sinica(Terrae), 2012, 42(5): 633-645. [22] 任雅琼, 刘培洵, 马瑾, 等. 亚失稳阶段雁列断层热场演化的实验研究[J]. 地球物理学报, 2013, 56(7): 2348-2357. REN Yaqiong, LIU Peixun, MA Jin, et al. Experimental study on evolution of thermal field of en echelon fault during the meta-instability stage[J]. Chinese Journal of Geophysics, 2013, 56(7): 2348-2357. [23] 阮怀宁, 余华中, 褚卫江. 大理岩脆-延-塑转换特性的细观模拟研究[J]. 岩石力学与工程学报, 2013, 32(1): 55-64. RUAN Huaining, YU Huazhong, CHU Weijiang. Mesoscopic simulation study of brittle-ductile-plastic transition character of marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 55-64. [24] 谢和平, 高明忠, 付成行,等. 深部不同深度岩石脆延转化力学行为研究[J]. 煤炭学报, 2021, 46(3): 701-715. XIE Heping, GAO Mingzhong, FU Chenghang, et al. Mechanical behavior of brittle-ductile transition in rocks at different depths[J]. Journal of China Coal Society, 2021, 46(3): 701-715. [25] 程建超, 刘殷彤, 张辽, 等. 砂岩三轴循环加卸载峰后力学突变行为[J]. 岩石力学与工程学报, 2025, 44(4): 850-864. CHENG Jianchao, LIU Yintong, ZHANG Liao, et al. Mechanical catastrophe behavior of sandstone after triaxial cyclic loading and unloading peak[J]. Chinese Journal of Rock Mechanics and Engineering, 2025, 44(4): 850-864. [26] 魏明星,朱永建,任恒,等.三轴卸荷损伤砂岩单轴再承载力学特性及其破坏机制[J]. 岩土力学, 2024, 45(10): 3047-3057. WEI Mingxing, ZHU Yongjian, REN Heng, et al. Uniaxial re-bearing mechanical characteristics and failure mechanism of triaxial unloading-damaged sandstone[J]. Rock and Soil Mechanics, 2024, 45(10): 3047-3057. [27] 陈浩南, 朱泽奇, 庞鑫, 等. 岩石卸荷的Mogi-Coulomb强度准则适用性研究[J]. 力学与实践, 2024, 46(3): 602-608. CHEN Haonan, ZHU Zeqi, PANG Xin, et al. Research on the applicability of Mogi-Coulomb strength criterion for rock unloading[J]. Mechanics in Engineering, 2024, 46(3):602-608. [28] 冯嵩, 郑颖人, 高红. 岩土常规三轴Drucker-Prager准则[J]. 岩土力学, 2024, 45(10): 2919-2928. FENG Song, ZHENG Yingren, GAO Hong. A new Drucker-Prager criterion for geomaterials under conventional triaxial stress condition[J]. Rock and Soil Mechanics, 2024, 45(10): 2919-2928. [29] 石广斌, 王伟峰, 杨敏, 等. 岩石强度屈服准则对隧洞围岩稳定分析结果影响[J]. 采矿技术, 2024, 24(3): 7-12. [30] LIU J S, ZHENG Z Y, ZHOU H, et al. Mechanical characteristics of similar weakly cemented soft rock under directional shear stress path and modified lade-Duncan criterion[J]. International Journal of Geomechanics, 2024, 24(11): 04024260. [31] AL-AJMI A M, ZIMMERMAN R W. Relation between the Mogi and the Coulomb failure criteria[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 431-439. [32] 邹萍, 钟鸣, 龙志林, 等. Mohr-Coulomb屈服准则与Drucker-Prager屈服准则在块体非晶合金中的应用[J]. 中国有色金属学报, 2015, 25(5): 1200-1208. ZOU Ping, ZHONG Ming, LONG Zhilin, et al. Applications of Mohr-Coulomb yield criterion and Drucker-Prager yield criterion in bulk amorphous alloys[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(5): 1200-1208. [33] 李硕标, 丁文其, 张清照. 考虑高温的钢材广义Mises屈服准则研究[J]. 土木工程学报, 2024, 57(4): 12-22. LI Shuobiao, DING Wenqi, ZHANG Qingzhao. Study on a generalized Mises yield criterion for steel considering elevated temperatures[J]. China Civil Engineering Journal, 2024, 57(4): 12-22. [34] LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10): 1037-1053. [35] EWY R T. Wellbore-stability predictions by use of a modified lade criterion[J]. SPE Drilling & Completion, 1999, 14(2): 85-91. [36] RUDNICKI J W. Failure of rocks in the laboratory and in the earth[C] //Proceedings of 22nd International Congress on Theoretical and Applied Mechanics,[S.l.] :Springer, Dordrecht: 2008: 199-215. [37] 王泽, 李文璞, 冯国瑞, 等. 真三轴卸荷条件下砂岩力学特性和剪切变形带预测模型[J]. 煤炭学报, 2023, 48(10): 3700-3712. WANG Ze, LI Wenpu, FENG Guorui, et al. Mechanical properties of sandstone and prediction model of shear deformation band under true triaxial unloading conditions[J]. Journal of China Coal Society, 2023, 48(10): 3700-3712. [38] 陈生水, 沈珠江, 郦能惠. 复杂应力路径下无粘性土的弹塑性数值模拟[J]. 岩土工程学报, 1995, 17(2): 20-28. [39] HADAMARD J S. Leçons sur la propagation des ondes et les équations de l'hydrodynamique[J]. Nature, 1904, 71(1835): 196-197. [40] THOMAS T. Plastic flow and fracture in solids[J]. Indiana University Mathematics Journal, 1958, 7(3): 291-322. [41] RUDNICKI J W, RICE J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371-394. [42] 张东明. 岩石变形局部化及失稳破坏的理论与实验研究[D]. 重庆: 重庆大学, 2004. ZHANG Dongming. Theoretical and experimental research on deformation localization and instability of rock[D]. Chongqing: Chongqing University, 2004.