Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (4): 1-20    DOI: 10.19952/j.cnki.2096-5052.2025.04.01
  前沿综述 本期目录 | 过刊浏览 | 高级检索 |
高地温隧道热害防治技术及发展趋势
王升1,2,3,4,阳灵润1,2*,李利平3,韦芹1,2,胡学兵4
1.重庆交通大学山区桥梁及隧道工程国家重点实验室, 重庆 400074;2.重庆交通大学土木工程学院, 重庆 400074;3.山东大学高端工程机械智能制造全国重点实验室, 山东 济南 250061;4.招商局重庆交通科研设计院有限公司, 重庆 400067
Teat damage prevention technology and development trend of high temperature tunnels
WANG Sheng1,2,3,4, YANG Lingrun1,2*, LI Liping3, WEI Qin1,2, HU Xuebing4
1. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
3. State Key Laboratory of Intelligent Manufacturing of Advanced Construction Machinery, Shandong University, Jinan 250061, Shandong, China;
4. China Merchants Chongqing Communications Technology Research &
Design Institute Co., Ltd., Chongqing 400067, China
下载:  PDF (5877KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过明晰高地温隧道热害多源传热机制不明、热害分类量化不完善、降温防控体系低效等问题,可助力构建隧道热害协同主动防控体系。本研究系统分析了高地温隧道热害的地质成因、热害影响及防控技术体系。通过揭示岩浆活动、岩石特性、地层构造及深循环地下水构成的多源热传递机制,阐明了各因素对热异常形成的控制作用,并探讨了当前热害分类中存在的未量化因素、防治手段面临的主要挑战与未来发展趋势。研究表明,高地温环境导致围岩力学性能劣化,并引发锚杆锚固强度下降、混凝土衬砌开裂及耐久性衰退等问题。针对热害防控,提出超前水平钻探测温预警技术,建立通风降温、喷雾降温、隔热材料及耐高温材料的协同防控体系并指出目前防控体系的缺陷以及突破方向。研究指出,极端高温下多技术协同的量化阈值尚未明确、轻骨料混凝土在强度与隔热性平衡上存在材料极限以及亟需开发具有优异耐高温性能和环境稳定性的复合材料。最后,提出3个热害防治发展趋势,使热害防治从被动响应转向主动防控,为川藏铁路等工程提供更安全、经济的解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王升
阳灵润
李利平
韦芹
胡学兵
关键词:  高地温隧道  地质发育  围岩劣化  热害防治  隔热结构    
Abstract: By clarifying the problems constraining the prevention and control of thermal damage in high-geothermal tunnels—including unclear multi-source heat transfer mechanisms, imperfect quantification of thermal damage classification, and low efficiency of cooling and prevention systems—the foundation was laid for building a collaborative and proactive thermal damage control system.This research systematically analyzed the geological causes, impacts, and prevention and control technology systems related to high-geothermal tunnel hazards.The multi-source heat transfer mechanism composed of magmatic activity, rock properties, structural geology, and deep-circulating groundwater was revealed. The controlling effects of various factors on thermal anomaly formation were clarified, along with unquantified factors in thermal hazard classification, challenges in mitigation methods, and future development trends. It was found that high-geothermal conditions lead to the deterioration of the mechanical properties of surrounding rock, resulting in reduced bolt anchoring strength, cracking of concrete linings, and decreased durability.To address thermal hazards, an advanced horizontal drilling temperature detection and early warning technology was proposed, and a collaborative prevention system integrating ventilation cooling, spray cooling, thermal insulation materials, and high-temperature-resistant materials was established.Limitations of the current system and potential breakthroughs were identified. Key challenges included the lack of clear quantitative thresholds for multi-technology coordination under extreme temperatures, the limited balance between strength and thermal insulation in lightweight aggregate concrete, and the urgent need for composite materials with excellent high-temperature resistance and environmental stability.Finally, three development trends for thermal hazard prevention were proposed, facilitating a shift from passive response to active prevention and control, thereby providing safer and more economical solutions for projects such as the Sichuan-Xizang Railway.
Key words:  high temperature tunnel    geological development    surrounding rock deterioration    thermal damage prevention and control    heat insulation structure
发布日期:  2025-12-29     
中图分类号:  U43  
  TU42  
基金资助: 国家自然科学基金资助项目(52408415);中国博士后科学基金面上资助项目(2024M752751);重庆市自然科学基金创新发展联合基金资助项目(CSTB2025NSCQ-LZX0110);重庆市教委科学技术研究资助项目(KJQN202300714;KJQN202201426);山东大学高端工程机械智能制造全国重点实验室开放基金课题资助项目(ACMKF2024-06)
作者简介:  王升(1989— ),男,山东泰安人,副教授,硕士生导师,博士,主要研究方向为岩土工程. E-mail:wshsdu@163.com. *通信作者简介:阳灵润(2002— ),男,湖南邵阳人,硕士研究生,主要研究方向为隧道及地下工程灾害防控. E-mail:2369358859@qq.com
引用本文:    
王升, 阳灵润, 李利平, 韦芹, 胡学兵. 高地温隧道热害防治技术及发展趋势[J]. 隧道与地下工程灾害防治, 2025, 7(4): 1-20.
WANG Sheng, YANG Lingrun, LI Liping, WEI Qin, HU Xuebing. Teat damage prevention technology and development trend of high temperature tunnels. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 1-20.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I4/1
[1] 郭平业, 卜墨华, 张鹏, 等. 高地温隧道灾变机制与灾害防控研究进展[J]. 岩石力学与工程学报, 2023, 42(7): 1561-1581. GUO Pingye, BU Mohua, ZHANG Peng, et al. Review on catastrophe mechanism and disaster countermeasure of high geotemperature tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1561-1581.
[2] 冯国会, 李兆星, 孙佳琳, 等. 高地温铁路隧道温度场影响因素分析[J]. 沈阳建筑大学学报(自然科学版), 2024, 40(6): 1047-1053. FENG Guohui, LI Zhaoxing, SUN Jialin, et al. Analysis of influencing factors on the temperature field in high geothermal railway tunnel[J]. Journal of Shenyang Jianzhu University(Natural Science), 2024, 40(6): 1047-1053.
[3] HU Y P, WANG Q L, WANG M N, et al. A study on the thermo-mechanical properties of shotcrete structure in a tunnel, excavated in granite at nearly 90 ℃ temperature[J]. Tunnelling and Underground Space Technology, 2021, 110: 103830.
[4] 严健, 何川, 汪波, 等. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征[J]. 岩石力学与工程学报, 2019, 38(4): 769-781. YAN Jian, HE Chuan, WANG Bo, et al. Inoculation and characters of rock bursts in extra-long and deep-lying tunnels located on Yarlung Zangbo suture[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 769-781.
[5] 郑宗溪, 孙其清. 川藏铁路隧道工程[J]. 隧道建设, 2017, 37(8): 1049-1054. ZHENG Zongxi, SUN Qiqing. The Sichuan-Tibet Railway tunnel project[J]. Tunnel Construction, 2017, 37(8): 1049-1054.
[6] 王松涛. 高地温隧道施工期热害综合防治关键技术研究[J]. 铁道建筑技术, 2024(3): 137-140. WANG Songtao. Research on the key technology of comprehensive prevention and control of heat damage during the construction of high ground temperature tunnels[J]. Railway Construction Technology, 2024(3): 137-140.
[7] 覃宇含, 孟祥林, 苏留锋, 等. 吸收式制冷系统应用于高温热害隧道降温的理论分析研究[J]. 隧道建设(中文), 2023, 43(11): 1887-1895. QIN Yuhan, MENG Xianglin, SU Liufeng, et al. Theoretical analysis of absorption refrigeration system for treating high temperature heat damage in tunnels[J]. Tunnel Construction, 2023, 43(11): 1887-1895.
[8] 范磊. 高地温深埋特长隧道热害综合防治关键技术研究[J]. 现代隧道技术, 2019, 56(6): 1-10. FAN Lei. Study on the key techniques for comprehensive control of heat harm of the deep-buried and super-long tunnel with high ground temperature[J]. Modern Tunnelling Technology, 2019, 56(6): 1-10.
[9] 李建高, 刘亚飞. 高黎贡山隧道1#高地温斜井降温处理技术研究及比选[J]. 隧道建设(中英文), 2020, 40(10): 1498-1505. LI Jiangao, LIU Yafei. Study on comprehensive cooling technology for high ground temperature in long and large inclined shaft of Dali-Ruili Railway[J]. Tunnel Construction, 2020, 40(10): 1498.
[10] 蒲松, 汪辉武, 李梦可, 等. 高地温TBM铁路隧道施工应对措施研究[J]. 铁道标准设计, 2023, 67(4): 116-121. PU Song, WANG Huiwu, LI Mengke, et al. Study on construction countermeasures of high geothermal TBM railway tunnel[J]. Railway Standard Design, 2023, 67(4): 116-121.
[11] 胡兆锋, 赵雷, 王雨. 大采深高地温局部机械降温技术应用[C] //山东煤炭学会第六次会员代表大会暨煤矿地热防治学术论坛论文集. 济南: 山东煤炭科技杂志, 2013: 9-11.
[12] WANG C K, LIU Z Y, ZHANG F K, et al. Heat hazards in high-temperature tunnels: influencing factors, disaster forms, the geogenetic model and a case study of a tunnel in Southwest China[J]. Sustainability, 2024, 16(3): 1044.
[13] 唐博宁, 邱楠生, 朱传庆, 等. 松辽盆地岩石热导率柱及古地温场分布特征[J]. 煤田地质与勘探, 2024, 52(1): 26-35. TANG Boning, QIU Nansheng, ZHU Chuanqing, et al. Thermal conductivity column of rocks and distribution characteristics of paleo-geothermal field in the Songliao Basin[J]. Coal Geology & Exploration, 2024, 52(1): 26-35.
[14] 徐胜平, 彭涛, 吴基文, 等. 两淮煤田煤系岩石热导率特征及其对地温场的影响[J]. 煤田地质与勘探, 2014, 42(6): 76-81. XU Shengping, PENG Tao, WU Jiwen, et al. The characteristics of rock thermal conductivity of coal measure strata and their influence on geothermal field in Huainan-Huaibei coalfield[J]. Coal Geology and Exploration, 2014, 42(6): 76-81.
[15] 朱传庆, 陈驰, 杨亚波, 等. 岩石热导率影响因素实验研究及其对地热资源评估的启示[J]. 石油科学通报, 2022, 7(3): 321-333. ZHU Chuanqing, CHEN Chi, YANG Yabo, et al. Experimental study into the factors influencing rock thermal conductivity and their significance to geothermal resource assessment[J]. Petroleum Science Bulletin, 2022, 7(3): 321-333.
[16] XU Z H, YU T F, LI S C, et al. Intelligent identification of lithology and adverse geology: a state-of-the-art review[J]. Smart Underground Engineering, 2025, 1(1): 3-25.
[17] QI B, SUN Y C, QI H, et al. The genesis of high ground temperature in the Long Mountain Road Tunnel[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(4): 042019.
[18] 杨冬, 胡政, 黄锋, 等. 尼格高地温隧道地热成因及地温分布特征研究[J]. 铁道科学与工程学报, 2023, 20(6): 2326-2339. YANG Dong, HU Zheng, HUANG Feng, et al. Study on geothermal origin and geothermal distribution characteristics of Nige high geothermal tunnel[J]. Journal of Railway Science and Engineering, 2023, 20(6): 2326-2339.
[19] 胡明, 冷文祥. 岩石导热各向异性对干热岩热量富集的影响[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 72-80. HU Ming, LENG Wenxiang. Effect of thermal conductivity anisotropy on heat accumulation of hot dry rock[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 72-80.
[20] 胡政, 郭维祥, 王平易, 等. 高地温隧道地温特征及预测研究[J]. 地下空间与工程学报, 2021, 17(6): 1906-1915. HU Zheng, GUO Weixiang, WANG Pingyi, et al. Study on ground temperature characteristics and prediction of high ground temperature tunnel[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(6): 1906-1915.
[21] 杨长保, 杨玉琦, 梁海丽, 等. 王行庄煤矿地温特征及地热资源的利用[J]. 能源与环保, 2018, 40(9): 132-136. YANG Changbao, YANG Yuqi, LIANG Haili, et al. Geothermal features and utilization of geothermal resources in Wangxingzhuang Coal Mine[J]. China Energy and Environmental Protection, 2018, 40(9): 132-136.
[22] ZHANG W J, BAI Y L, HAN C H, et al. Impact of connectivity characteristics on the permeability of three-dimensional fracture networks[J]. Smart Underground Engineering, 2025, 1(1): 64-75.
[23] 杨翔, 陈松, 郦亚军. 隧道高温地下水处理理念探讨[J]. 现代隧道技术, 2013, 50(3): 8-16. YANG Xiang, CHEN Song, LI Yajun. Discussion of treatment concepts for a tunnel with high-temperature groundwater[J]. Modern Tunnelling Technology, 2013, 50(3): 8-16.
[24] 李永生, 杨立新, 苟红松. 隧道施工环境舒适性研究[J]. 隧道建设, 2012,32(6):806-810. LI Yongsheng, YANG Lixin, GOU Hongsong. Analysis on comfort property of working environment in tunnels[J]. Tunnel Construction, 2012, 32(6): 806-810.
[25] 徐立功, 李浩, 陈祥林, 等. 锚杆参数对围岩稳定性影响的数值分析[J]. 岩土工程学报, 2010, 32(增刊2): 249-252. XU Ligong, LI Hao, CHEN Xianglin, et al. Numerical analysis on the impact of rock bolt parameters on stability of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(Suppl. 2): 249-252.
[26] 杨文东, 刘春天, 张祥, 等. 锚索预应力损失与岩体蠕变耦合的理论分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 33-41. YANG Wendong, LIU Chuntian, ZHANG Xiang, et al. Coupling analysis between prestress loss of anchor cables and creep of rocks[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(2): 33-41.
[27] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051. SHEN Jiarong, XU Qianjun. Characteristics of pore structure change and compressive strength reduction of concrete under elevated temperatures[J]. Materials Reports, 2020, 34(2): 2046-2051.
[28] 王峥, 宋玉普. 高温对混凝土抗拉强度与黏结强度影响的试验研究[J]. 混凝土, 2010(8): 51-53. WANG Zheng, SONG Yupu. Testing research of tensile and bonding strength of concrete affected by high temperature[J]. Concrete, 2010(8): 51-53.
[29] 李潇雅, 张仁波, 金浏, 等. 高温效应对钢筋-混凝土动态黏结性能的影响: 精细化模拟[J]. 振动工程学报, 2023, 36(4): 1062-1072. LI Xiaoya, ZHANG Renbo, JIN Liu, et al. Effect of high temperature on the dynamic bonding performance of reinforced concrete: a refined simulation[J]. Journal of Vibration Engineering, 2023, 36(4): 1062-1072.
[30] 刘庆, 赵铁军, 刘志强, 等. 高温作用下混凝土耐久性劣化性能研究[J]. 硅酸盐通报, 2016, 35(3): 897-902. LIU Qing, ZHAO Tiejun, LIU Zhiqiang, et al. Degradation of durability of concrete under elevated temperature[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3): 897-902.
[31] 程磊. 高岩温低湿环境下铁路隧道混凝土耐久性研究[J]. 铁道标准设计, 2015, 59(8): 136-139. CHENG Lei. Research on the durability of concrete under high rock temperature and low humidity environment[J]. Railway Standard Design, 2015, 59(8): 136-139.
[32] 陈正发, 刘桂凤, 秦彦龙, 等. 恶劣环境下机制砂混凝土的强度和耐久性能[J]. 建筑材料学报, 2012, 15(3): 391-394. CHEN Zhengfa, LIU Guifeng, QIN Yanlong, et al. Strength and durability of concrete with manufactured-sand in severe environment[J]. Journal of Building Materials, 2012, 15(3): 391-394.
[33] CHEN W Z, TAN X Y, YANG J P. Review of state-of-the-art in structural health monitoring of tunnel engineering[J]. Smart Underground Engineering, 2025, 1(1): 40-50.
[34] 王晖, 黄昕, 金国龙. 酸性腐蚀下混凝土试件物理力学性能演化规律[J]. 隧道与地下工程灾害防治, 2023, 5(4): 57-64. WANG Hui, HUANG Xin, JIN Guolong. The evolution of physical and mechanical properties of concrete specimens under acid corrosion[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 57-64.
[35] 李晓刚, 郭永奇, 周洪军, 等. 钢渣沥青混凝土耐久性室内试验研究[J]. 科学技术与工程, 2023, 23(12): 5267-5277. LI Xiaogang, GUO Yongqi, ZHOU Hongjun, et al. Laboratory evaluation on the durability of steel slag asphalt concrete[J]. Science Technology and Engineering, 2023, 23(12): 5267-5277.
[36] 李茂森, 王露, 王军, 等. 大掺量矿物掺合料混凝土碳化行为研究进展[J]. 硅酸盐通报, 2023, 42(11): 3787-3798. LI Maosen, WANG Lu, WANG Jun, et al. Research progress on carbonation behavior of concrete with large volume of mineral admixture[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3787-3798.
[37] 郭平业, 卜墨华, 张鹏, 等. 矿山地热防控与利用研究进展[J]. 工程科学学报, 2022, 44(10): 1632-1651. GUO Pingye, BU Mohua, ZHANG Peng, et al. Research progress onthe prevention and utilization of mine geothermal energy[J]. Chinese Journal of Engineering, 2022, 44(10): 1632-1651.
[38] 严健, 何川, 汪波, 等. 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550. YAN Jian, HE Chuan, WANG Bo, et al. Influence of high geotemperature on rockburst occurrence in tunnel[J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[39] 周航, 张广泽, 赵晓彦, 等. 深部极高地应力花岗岩隧道岩爆破坏特征及成因机理研究[J]. 工程地质学报, 2024, 32(3): 1098-1111. ZHOU Hang, ZHANG Guangze, ZHAO Xiaoyan, et al. Rockburst failure characteristics and formation mechanism of deep granite tunnel with extremely high geo-stress[J]. Journal of Engineering Geology, 2024, 32(3): 1098-1111.
[40] 谢君泰, 余云燕. 高海拔隧道工程热害等级划分[J]. 铁道工程学报, 2013, 30(12):69-73. XIE Juntai, YU Yunyan. Grades for heat damage in high altitude tunnel engineering[J]. Journal of Railway Engineering Society, 2013, 30(12):69-73.
[41] 刘庆宽, 郑肖楠, 崔会敏, 等. 高海拔高地温铁路隧道施工通风CO扩散特性分析[J]. 地下空间与工程学报, 2022, 18(增刊2): 1015-1022. LIU Qingkuan, ZHENG Xiaonan, CUI Huimin, et al. Analysis on CO diffusion characteristics of high altitude and highground temperature railway tunnel construction ventilation[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(Suppl.2): 1015-1022.
[42] 洪开荣, 冯欢欢. 高黎贡山隧道TBM法施工重难点及关键技术分析[J]. 现代隧道技术, 2018, 55(4): 1-8. HONG Kairong, FENG Huanhuan. Construction difficulties and key techniques for the Gaoligong Mountain TBM Tunnel[J]. Modern Tunnelling Tech-nology, 2018, 55(4): 1-8.
[43] JIANG Y J, PAN Z T, ZHANG X P. Tunnel infrastructure health management: a state-of-the-art review on defect development mechanism and robot-aided inspection system[J]. Smart Underground Engineering, 2025, 1(1): 26-39.
[44] 周长冰. 高温岩体水压致裂钻孔起裂与裂缝扩展机理及其应用[D]. 北京: 中国矿业大学, 2017: 13-30. ZHOU Changbing. Mechanism of hydraulic fracture borehole's fracture initiation and propagation for the high-temperature rock mass and its application[D]. Beijing:China University of Mining and Technology, 2017: 13-30.
[45] 王卓, 张亮. 高黎贡山隧道施工热环境通风降温计算方法应用研究[J]. 隧道建设(中英文), 2020, 40(增刊2): 144-150. WANG Zhuo, ZHANG Liang. Application of calculation method for ventilation and cooling in thermal envi-ronment of Gaoligongshan Tunnel construction[J]. Tunnel Construction, 2020, 40(Suppl. 2): 144-150.
[46] 戴开来, 王峰. 曲线型公路隧道防灾通风设计问题探讨[J]. 隧道与地下工程灾害防治, 2024, 6(2): 76-83. DAI Kailai, WANG Feng. Discussion on disaster prevention ventilation design for a curved road tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 76-83.
[47] LI Z J, JIA Q, LI G, et al. Performance analysis and optimization of coupled cooling system for auxiliary ventilation and partial thermal insulation in high geothermal tunnels[J]. Applied Sciences, 2024, 14(5): 2128.
[48] 王志杰, 姜逸帆, 林铭, 等. 高地温尼格隧道综合降温体系研究[J]. 隧道建设(中英文), 2022, 42(1): 16-25. WANG Zhijie, JIANG Yifan, LIN Ming, et al. Comprehensive cooling system of Nige Tunnel with high ground temperature[J]. Tunnel Construction, 2022, 42(1): 16-25.
[49] 王勇, 贺龙鹏, 张嘉轩, 等. 压入式通风条件下高地温隧道降温效果研究[J]. 施工技术(中英文), 2024, 53(16): 55-61. WANG Yong, HE Longpeng, ZHANG Jiaxuan, et al. Study on cooling effect of high ground temperature tunnel under forced ventilation[J]. Construction Technology, 2024, 53(16): 55-61.
[50] 田宝华, 张彪, 刘延龙, 等. 考虑环境湿度条件下高地温隧道喷雾降温研究[J]. 公路工程, 2023, 48(6): 23-30. TIAN Baohua, ZHANG Biao, LIU Yanlong, et al. Research on spray cooling in high geothermal temperature tunnel considering ambient humidity[J]. Highway Engineering, 2023, 48(6): 23-30.
[51] 王文, 杨继康, 胡吉春, 等. 高温隧道气温变化规律及喷雾降温参数优化研究[J]. 铁道科学与工程学报, 2025,22(9):4064-4078. WANG Wen, YANG Jikang, HU Jichun, et al. Temperature variation law and optimization of spray cooling parameters in high temperature tunnel[J]. Journal of Railway Science and Engineering, 2025,22(9):4064-4078.
[52] 路明,于丽, 刘媛, 等. 高地温隧道长距离施工降温供风量计算方法及降温设计研究[J]. 中国铁道科学, 2025, 46(5): 162-172. LU Ming, YU Li, LIU Yuan, et al. Research on calculation method and cooling design for cooling air supply volume in long-distance construction of high geothermal tunnels[J]. China Railway Science, 2025, 46(5): 162-172.
[53] 丁俊智, 林英鸿, 柯明村, 等. 喷雾冷却法应用于雪山隧道降温之研究[J]. 隧道建设, 2014, 34(增刊1): 71-76. DING Junzhi, LING Yinghong, KE Mingcun, et al. Study on cooling Hsuehshan Tunnel temperature by water mist cooling method[J]. Tunnel Construction, 2014, 34(Suppl. 1): 71-76.
[54] 刘庆平, 冯炼. 长大公路隧道喷雾降温可行性分析[J]. 制冷与空调(四川), 2020, 34(5): 577-580. LIU Qingping, FENG Lian. Feasibility analysis of spray cooling for long highway tunnel[J]. Refrigeration & Air Conditioning, 2020, 34(5): 577-580.
[55] 乔红彦. 高地温隧道超长独头施工降温及热环境特征研究[J]. 地下空间与工程学报, 2023, 19(2): 632-639. QIAO Hongyan. Research on cooling and thermal environment of super-long single-headed tunnel con-struction with high ground temperature[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(2): 632-639.
[56] 崔光耀, 韦宜霏, 熊泳, 等. 临近导热断层高岩温隧道施工环境温度控制技术研究[J]. 现代隧道技术, 2023, 60(6): 246-254. CUI Guangyao, WEI Yifei, XIONG Yong, et al. Study on the ambient temperature control technology for construction of a tunnel near heat-conducting fault and with high rock temperature[J]. Modern Tunnelling Technology, 2023, 60(6): 246-254.
[57] 谢高英. 高地温隧道施工期冰块辅助降温效果研究[J]. 地下空间与工程学报, 2023, 19(4): 1329-1338. XIE Gaoying. Research on cooling effect of ice cube assisted method in high ground temperature tunnel construction period[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(4): 1329-1338.
[58] WANG P, LU S M, WU X W, et al. Mist spraying as an outdoor cooling spot in hot-humid areas: effect of ambient environment and impact on short-term thermal perception[J]. Buildings, 2024, 14(2): 336.
[59] 李建军, 张国红, 张品. 高海拔米拉山公路隧道建设关键技术研究[J]. 地下空间与工程学报, 2020, 16(增刊1): 170-177. LI Jianjun, ZHANG Guohong, ZHANG Pin. Research on key technologies of highway tunnel construction in high altitude Milla Mountain[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(Suppl. 1): 170-177.
[60] 刘向阳, 罗兵兵, 吴静, 等. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75. LIU Xiangyang, LUO Bingbing, WU Jing, et al. Comparative study on cooling effect of combination of ice and ventilation in tunnel with high ground temperature construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 66-75.
[61] 周佳媚, 沈文杰, 朱宇, 等. 铁路隧道施工期冰块降温技术研究[J]. 中国安全科学学报, 2022, 32(6): 44-52. ZHOU Jiamei, SHEN Wenjie, ZHU Yu, et al. Research on ice block cooling technology during railway tunnel construction[J]. China Safety Science Journal, 2022, 32(6): 44-52.
[62] 朱宇, 周佳媚, 王帅帅, 等. 冰块降温在热带地区高地温隧道施工中的数值模拟研究——以海南省五指山公路隧道为例[J]. 隧道建设(中英文), 2020, 40(12): 1742-1747. ZHU Yu, ZHOU Jiamei, WANG Shuaishuai, et al. Numerical simulation of ice cooling in tunnel construction with high geotherm in tropical area:a case study of Wuzhishan Highway Tunnel in Hainan, China[J]. Tunnel Construction, 2020, 40(12): 1742-1747.
[63] 杨立然, 黄翔, 贾曼, 等. 蒸发冷却与机械制冷协同耦合空调关键技术与节能性研究[J]. 流体机械, 2019, 47(8): 61-65. YANG Liran, HUANG Xiang, JIA Man, et al. Research on key technology and energy saving of air conditioner combined with evaporative cooling and mechanical refrigeration[J]. Fluid Machinery, 2019, 47(8): 61-65.
[64] ALBATAYNEH A, ALBADAINEH R, JUAIDI A. Climate change impacts on residential energy usage in hot semi-arid climate: Jordan case study[J]. Energy for Sustainable Development, 2024, 83: 101576.
[65] 魏子棋. 高地温深埋特长公路隧道隔热降温技术研究[D]. 成都: 西南交通大学, 2021: 32-38. WEI Ziqi. Research on thermal insulation and cooling technology of deep-buried super-long highway tunnel with high ground temperature[D]. Chengdu: Southwest Jiaotong University, 2021: 32-38.
[66] 马昆林, 龙广成, 谢友均. 蒸养混凝土轨道板劣化机理研究[J]. 铁道学报, 2018, 40(8): 116-121. MA Kunlin, LONG Guangcheng, XIE Youjun. Deterioration mechanism of steam-cured concrete track slab[J]. Journal of the China Railway Society, 2018, 40(8): 116-121.
[67] 罗明睿, 陶亮亮, 曾艳华, 等. 考虑喷射混凝土耐热性能的高地温隧道支护结构研究[J]. 铁道学报, 2024, 46(11): 170-179. LUO Mingrui, TAO Liangliang, ZENG Yanhua, et al. Study on supporting structure of high geothermal tunnel considering heat resistance of shotcrete[J]. Journal of the China Railway Society, 2024, 46(11): 170-179.
[68] 孙文昊, 陈俊松, 穆松, 等. 高岩温环境下矿物掺合料对喷射混凝土强度和抗渗性的影响[J]. 新型建筑材料, 2024, 51(6): 47-51. SUN Wenhao, CHEN Junsong, MU Song, et al. Influence of mineral admixture on strength and impermeability of shotcrete under high temperature environment[J]. New Building Materials, 2024, 51(6): 47-51.
[69] 童格军, 庞建勇, 姜平伟, 等. 复掺轻骨料纤维喷射混凝土力学及导热性能试验研究[J]. 中国安全生产科学技术, 2021, 17(10): 92-98. TONG Gejun, PANG Jianyong, JIANG Pingwei, et al. Experimental study on mechanical and thermal conductivity properties of compound lightweight aggregate fiber shotcrete[J]. Journal of Safety Science and Technology, 2021, 17(10): 92-98.
[70] JANSEND P, CARLSON S R, YOUNG R P, et al. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B12): 22231-22243.
[71] 张俊儒, 欧小强. 适用于高岩温隧道中的高性能隔热轻骨料喷射混凝土[J]. 混凝土, 2016(9): 140-144. ZHANG Junru, OU Xiaoqiang. Research idea for high-performance thermal insulation light weight aggregate shotcrete in high geo-temperature tunnel[J]. Concrete, 2016(9): 140-144.
[72] 尹吉军. 轻骨料(陶粒)混凝土结构性能研究[D]. 成都: 西南交通大学, 2011: 28-32. YI Jijun. Research on the performance of lightweight aggregate(ceramsite)concrete structures[D]. Chengdu: Southwest Jiaotong University, 2011: 28-32.
[73] 张立勃, 张然然, 杨卓. 骨料对保温混凝土长期隔热性能的影响[J]. 建筑技术, 2021, 52(9): 1083-1086. ZHANG Libo, ZHANG Ranran, YANG Zhuo. Influence of aggregate on long-term thermal insulation performance of thermal insulation concrete[J]. Architecture Technology, 2021, 52(9): 1083-1086.
[74] 伍修刚, 左奎现, 何兆才, 等. 强震区高岩温隧道两种隔热材料的隔热减震效果分析[J]. 国防交通工程与技术, 2017, 15(6): 34-37. WU Xiugang, ZUO Kuixian, HE Zhaocai, et al. An analysis of the thermal insulation and shock absorption effects of two kinds of thermal insulation materials in high-rock-temperature tunnels in meizoseismal areas[J]. Traffic Engineering and Technology for National Defence, 2017, 15(6):34-37.
[75] 尚君, 崔祎菲, 黄巍林. 高地温环境条件下超细粉掺量对隧道衬砌混凝土抗压及抗渗性能的影响[J]. 应用化学, 2024, 41(9): 1342-1349. SHANG Jun, CUI Yifei, HUANG Weilin. Influence of Ultrafine powder content on compressive and impermeability of tunnel lining concrete under high ground temperature environment[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1342-1349.
[76] SERUGA A, SZYDŁOWSKI R S, SLAGA Ł. Experimental research of bond strength of lightweight aggregate concrete to 15.7 mm non-pretensioned steel strands[J]. Materials, 2024, 17(17): 4361.
[77] 吴根强, 王志杰. 高地温铁路隧道隔热层方案研究[J]. 铁道科学与工程学报, 2017, 14(8): 1715-1726. WU Genqiang, WANG Zhijie. Study on thermal insulation layer of high ground temperature railway tunnel[J]. Journal of Railway Science and Engineering, 2017, 14(8): 1715-1726.
[78] 齐兵, 杨松, 曹振生, 等. 高地温隧道隔热层方案优化设计及应用——以尼格隧道为例[J]. 科学技术与工程, 2023, 23(9): 4004-4010. QI Bing, YANG Song, CAO Zhensheng, et al. Optimization design and application of high temperature tunnel thermal insulation layer scheme: taking the Nige Tunnel as an example[J]. Science Technology and Engineering, 2023, 23(9): 4004-4010.
[79] 刘喜康. 高岩温对隧道支护结构的影响及隔热层方案研究[J]. 工程建设与设计, 2020(19): 101-103. LIU Xikang. Study on the influence of high rock temperature on tunnel supporting structure and the scheme of thermal insulation layer[J]. Construction & Design for Engineering, 2020(19): 101-103.
[80] ZHANG M, WANG T, WANG X C, et al. Analysis on the laying method and thermal insulation effect of tunnel insulation layer in high-altitude cold regions[J]. Electronic Journal of Structural Engineering, 2023, 23(4): 66-74.
[81] 伍修刚, 左奎现, 何兆才, 等. 强震区高岩温隧道两种隔热材料的隔热减震效果分析[J]. 国防交通工程与技术, 2017, 15(6): 34-37. WU Xiugang, ZUO Kuixian, HE Zhaocai, et al. An analysis of the thermal insulation and shock absorption effects of two kinds of thermal insulation materials in high-rock-temperature tunnels in meizoseismal areas[J]. Traffic Engineering and Technology for National Defence, 2017, 15(6): 34-37.
[82] LIANG J K, JI X, HAN J Y, et al. Modeling and experimental investigation on a direct steam generation solar collector with flat plate thermal concentration[J]. Energy Exploration & Exploitation, 2020, 38(5): 1879-1892.
[83] 郭利民, 段俊哲, 夏才初, 等. 基于混凝土强度的高地热隧道隔热层厚度研究[J]. 铁道标准设计, 2024, 68(4): 161-167. GUO Limin, DUAN Junzhe, XIA Caichu, et al. Research on the thermal insulation layer thickness in high geothermal tunnels based on concrete strength[J]. Railway Standard Design, 2024, 68(4): 161-167.
[84] PENG F L, QIAO Y K, YANG C. A LSTM-RNN based intelligent control approach for temperature and humidity environment of urban utility tunnels[J]. Heliyon, 2023, 9(2): e13182.
[85] AN R N, LIN P, LI Z C, et al. Intelligent ventilation-on-demand control system for the construction of underground tunnel complex[J]. Journal of Intelligent Construction, 2024, 2(2): 1-16.
[86] LI J Q, LI Y C, ZHANG W, et al. Multi-objective intelligent decision and linkage control algorithm for mine ventilation[J]. Energies, 2022, 15(21): 7980.
[87] BOKOV D, TURKI JALIL A, CHUPRADIT S, et al. Nanomaterial by sol-gel method: synthesis and application[J]. Advances in Materials Science and Engineering, 2021, 2021(1): 5102014.
[88] BOZSAKY D. Special thermal insulation methods of building constructions with nanomaterials[J]. Acta Technica Jaurinensis, 2016, 9(1):29-41.
[89] 李宽. 隧道工程的复合型衬砌施工技术的应用探讨[J]. 交通科技与管理, 2024(16): 70-72.
[1] 王升, 阳灵润, 李利平, 韦芹, 胡学兵. 高地温隧道热害防治技术及发展趋势[J]. 隧道与地下工程灾害防治, 0, (): 1-25.
[2] 张海兰、吴云鹏、邹仁、马晓龙、李坤泰、高启栋、牛磊、周海孝. 基于SPH-FEM耦合模拟的隧道深埋排水沟爆破技术优化研究[J]. 隧道与地下工程灾害防治, 0, (): 1-18.
[3] 丁建奇、王陈成、朱向闪、张翔、傅刚、徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 0, (): 1-13.
[4] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性分析[J]. 隧道与地下工程灾害防治, 0, (): 1-15.
[5] 王晖, 黄昕, 金国龙. 酸性腐蚀下混凝土试件物理力学性能演化规律[J]. 隧道与地下工程灾害防治, 2023, 5(4): 57-64.
[6] 王晖, 黄昕, 金国龙. 酸性腐蚀下混凝土试件物理力学性能演化规律研究[J]. 隧道与地下工程灾害防治, 0, (): 1-9.
[7] 韩桂武, 郭书太, 周锐. 煤矿巷道储油技术体系研究及应用[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[8] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88.
[9] 李荣建, 李浩泽, 白维仕, 王磊, 张瑾. 潜在滑动面对隧道衬砌承载特性影响的模型试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(4): 1-8.
[10] 潘鹏志, 梅万全. 基于CASRock的工程岩体动力响应分析方法、软件与应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 1-10.
[11] 刘润,黄旋智,袁宇,马鹏程. 土体弱化对海上风电单桩基础的影响研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 56-63.
[12] 赵志宏, 郭铁成, 林涛, 陈思聪. 考虑粗糙度影响的裂隙岩体开挖损伤区分布规律[J]. 隧道与地下工程灾害防治, 2019, 1(3): 77-86.
[13] 庄海洋, 付继赛, 朱明轩, 陈苏, 陈国兴. 柱顶设置滑移支座时地铁地下车站结构抗震性能分析[J]. 隧道与地下工程灾害防治, 2019, 1(3): 57-67.
[14] 蔡国军, 刘路路, 龚申, 刘松玉. 基于CPTU测试的海相软土刚性桩复合地基承载特性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 46-56.
[15] 魏纲,黄时雨,蒋丞武,虞兴福,王新泉. 上软下硬地层盾构工作井开挖受力与变形监测分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 29-36.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn