Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (2): 100-106    
  本期目录 | 过刊浏览 | 高级检索 |
地下采场二步采充填体最大暴露高度理论分析
闫保旭,朱万成*,侯晨
东北大学资源与土木工程学院, 辽宁 沈阳 110819
Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope
YAN Baoxu, ZHU Wancheng*, HOU Chen
College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, Liaoning, China
下载:  PDF (3635KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 二步开采中,充填体作为自立型人工矿柱支撑采场的稳定性,保证二步开采矿柱能够安全进行。在矿柱的开采过程中避免充填体一次性暴露高度过大而导致失稳是关键所在。通过考虑充填体的应力成拱效应,充填体与围岩体界面之间的摩擦力,得到充填体在一定内聚力下,矿柱可开挖的最大临界高度,以及矿柱在开挖一定高度时,保证充填体不失稳破坏所需最小内聚力的理论模型。结果表明:忽视充填体内部应力成拱效应及其充填体与围岩体界面间的摩擦阻力会高估充填体的稳定性;充填体具有相同的暴露高度时,充填体的安全系数随着充填体内聚力增大呈指数型增大;随着矿柱一次性开挖高度的增大,充填体的安全系数呈现负指数型降低,充填体内聚力越大,降低的速率越大;当充填体暴露高度过大时,充填体的稳定性主要由滑移块体的重力作用引起。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫保旭
朱万成
侯晨
关键词:  充填体  地下采场  稳定性  理论模型  拱效应    
Abstract: When mining adjacent stope, backfill is used to ensure the stability of the stope, and thus the remaining pillars can be safely carried out. In the process of pillar mining, it is important to avoid the excessive exposure height of backfill. Based on the stress distribution and arching effect in backfill, the minimum cohesion required for backfill to ensure the stope stability was obtained under certain height of the pillar excavation. And the maximum critical height of pillar excavation under certain cohesion was also obtained. The results showed that neglecting the influence of shear force between backfill and surrounding rock overestimates the stability of backfill; When the backfill had the same exposure height, the safety factor increases exponentially with the increase of cohesion of the backfill. With the increase of the one-time excavation height of the pillar, the safety factor was decreased by negative exponent, the larger the cohe- 2019年 - 第1卷第2期闫保旭,等: 地下采场二步采充填体最大暴露高度理论分析 \=-sion in the backfill was, the higher the rate decreased. And when the exposed height of backfill was enough larger, the failure of backfill was mainly caused by gravity.
Key words:  backfill    underground stope    stability    analytical model    arching effect
收稿日期:  2018-04-16                出版日期:  2019-06-30      发布日期:  2019-07-29      期的出版日期:  2019-06-30
中图分类号:  TD853.34  
基金资助: 国家自然科学基金资助项目(51525402,51374049,51534003);教育部科学技术研究重点资助项目(113019A);中央高校基本科研业务费专项资金资助项目(N140105001,N140106002,N170106003)
通讯作者:  朱万成(1974— ),男,新疆呼图壁县人,博士,教授,博士生导师,国家杰出青年科学基金获得者,教育部“长江学者”特聘教授,主要研究方向为深部岩体损伤与破裂过程及其诱发矿山动力灾害的机理研究. E-mail:zhuwancheng@mail.neu.edu.cn   
作者简介:  闫保旭(1992— ),男,甘肃白银人,博士研究生,主要研究方向为矿山充填及充填体力学. E-mail:yan_baoxu@126.com. *通信作者:朱万成(1974— ),男,新疆呼图壁县人,博士,教授,博士生导师,国家杰出青年科学基金获得者,教育部“长江学者”特聘教授,主要研究方向为深部岩体损伤与破裂过程及其诱发矿山动力灾害的机理研究. E-mail:zhuwancheng@mail.neu.edu.cn
引用本文:    
闫保旭,朱万成,侯晨. 地下采场二步采充填体最大暴露高度理论分析[J]. 隧道与地下工程灾害防治, 2019, 1(2): 100-106.
YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 100-106.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I2/100
[1] MITCHELL Robert J, OLSEN Richard S, SMITH John D. Model studies on cemented tailings used in mine backfill[J]. Canadian Geotechnical Journal, 1982, 19(1): 14-28.
[2] BELEM Tikov, BENZAAZOUA Mostafa. Design and application of underground mine paste backfill technology[J]. Geotechnical and Geological Engineering, 2007, 26(2): 147-174.
[3] ZHU Mingzhe. Analysis of mine backfill behaviour and stability[D]. Montreal, Canada: McGill University, 2002, PhD.
[4] WINCH C. Geotechnical characteristics and stability of paste backfill at bhp cannington mine[D]. Townsville, Australia: James Cook University, 1999.
[5] DIRIGE A P E, MCNEARNY R L, THOMPSON D S. The effect of stope inclination and wall rock roughness on backfill free face stability[C] //Proceedings of the 3rd CANUS Rock Mechanics Symposium. Toronto, Cannada:[s.n.] , 2009.
[6] HELINSKI Matthew, MERRIKIN Daniel. Reliability analysis of mine backfill exposures[C] //Proceedings of the 12th International Symposium on Mining with Backfill. Mount Isa, Australia: Australian Center for Geomechanics(ACG), 2017.
[7] DENG Jian. Reliability analysis and design of backfill in a cut-and-fill mining method[C] //Proceedings of the 20th International Seminar on Paste and Thickened Tailings. Beijing, China: Australian Center for Geomechanics(ACG), 2017.
[8] LI Li. Analytical solution for determining the required strength of a side-exposed mine backfill containing a plug[J]. Canadian Geotechnical Journal, 2014, 51(5): 508-519.
[9] LI Li. Generalized solution for mining backfill design[J]. International Journal of Geomechanics, 2014, 14(3): 4014006.
[10] LI Li, AUBERTIN Michell. An improved method to assess the required strength of cemented backfill in underground stopes with an open face[J]. International Journal of Mining Science and Technology, 2014, 24(4): 549-558.
[11] NANTHANANTHAN Nadarajah, ZOU Steve D H. Effect of overlying load on exposed backfill block in underground mines[C] //MINEFILL 2007. Montreal, Canada:[s.n.] , 2007.
[12] NASIR O, FALL M. Shear behaviour of cemented pastefill-rock interfaces[J]. Engineering Geology, 2008, 101(3-4): 146-153.
[13] KOUPOULI Nabassé J F, BELEM Tikou, RIVARD Patrice, et al. Direct shear tests on cemented paste backfill-rock wall and cemented paste backfill-backfill interfaces[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(4): 472-479.
[14] HANDY Richard L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318.
[15] AUBERTIN M, LI L, ARNOLDI S, et al. Interaction between backfill and rock mass in narrow stopes[J]. Soil and Rock America, 2003, 1: 1157-1164.
[16] LI L, AUBERTIN M, SIMON R. Modeling arching effects in narrow backfilled stopes with FLAC[C] //Proceedings of the 3rd international symposium on FLAC & FLAC3D numerical modelling in Geomechanics. Ontario, Canada:[s.n.] , 2003: 211-219.
[17] LI Li, AUBERTIN Michell, TIKOU Belem. Formulation of a three dimensional analytical solution to evaluate stresses in backfilled vertical narrow openings[J]. Canadian Geotechnical Journal, 2005, 42(6): 1705-1717.
[18] MOSER A, WALLNER F, WAGNER H, et al. An experimental study to investigate the interaction of backfill and rock mass[C] //Ground Support 2016, Lulea University of Technology. Sweden:[s.n.] , 2016.
[19] CUI Liang, FALL Mamadou. Multiphysics modeling of arching effects in fill mass[J]. Computers & Geotechnics, 2017, 83: 114-131.
[20] TING Ching Hung, SHUKLA Sanjay Kumar, NAGARATNAM Sivakugan M. Arching in soils applied to inclined mine stopes[J]. International Journal of Geomechanics, 2010, 11(1): 29-35.
[21] JAHANBAKHSHZADEH Abtin, AUBERTIN Michell, LI Li. A new analytical solution for the stress state in inclined backfilled mine stopes[J]. Geotechnical and Geological Engineering, 2017, 35(3): 1-17.
[22] SINGH S, SIVAKUGAN N M, SHUKLA S K. Can soil arching be insensitive to φ?[J]. International Journal of Geomechanics, 2009, 10(3): 124-128.
[1] 高源, 杨天鸿, 辛全明, 刘飞跃. 北山隧道式大跨度地下四季滑雪场围岩稳定性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 109-115.
[2] 陈建勋,罗彦斌. 大跨度黄土公路隧道结构稳定性及控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 93-101.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn