Please wait a minute...
 
隧道与地下工程灾害防治  2020, Vol. 2 Issue (4): 19-28    
  本期目录 | 过刊浏览 | 高级检索 |
超深井筒开挖扰动应力响应特征分析
赵兴东1,李洋洋1,张姝婧1,陈玉民2,王成龙3,王玺4
1. 东北大学采矿地压与控制研究中心, 辽宁 沈阳 110819;2. 山东黄金集团有限公司, 山东 济南 250100;3. 山东黄金集团有限公司烟台矿业事业部, 山东 莱州 261400;4. 山东黄金集团有限公司深井开采实验室, 山东 莱州 261400
Analysis and application of disturbance stress reaction mechanism of surrounding rock during sinking ultra-deep shaft
ZHAO Xingdong1, LI Yangyang1, ZHANG Shujing1, CHEN Yumin2, WANG Chenglong3, WANG Xi4
1. Geomechanics Research Center, Northeastern University, Shenyang 110819, Liaoning, China;
2. Shandong Gold Group Co., Ltd., Jinan 250100, Shandong, China;
3. Yantai Mining Business Department, Shandong Gold Group Co., Ltd., Laizhou 261400, Shandong, China;
4. Deep Mining Laboratory, Shandong Gold Group Co., Ltd., Laizhou 261400, Shandong, China
下载:  PDF (1139KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对超深井筒围岩稳定性分析问题,以Mohr-Column强度准则为基础,采用弹塑性本构模型,通过缩减井筒围岩开挖边界的径向支护力模拟井筒开挖,以开挖扰动应力重分布与围岩破坏演化过程分析阐述井筒横剖面围岩扰动应力响应机制,同时分析与总结井筒纵剖面围岩扰动应力响应机制。随着竖井开凿深度的增加,其井筒围岩失稳主要表现为结构面控制型、应力控制型以及由结构面控制向应力控制转化3种类型;考虑新城金矿新主井井筒围岩工程地质条件,结合新主井井筒开挖围岩扰动应力响应机制,采用不同岩石屈服准则,计算新主井井筒围岩破坏纵深分布,以判定其失稳类型并沿井筒纵深区域划分。分析计算结果表明:新主井0~387 m深度井筒围岩失稳类型为结构面控制型,387~654.7 m深度井筒围岩为由结构面控制型向应力控制型失稳转化区域,而新主井654.7~1 527 m深度井筒围岩失稳类型则为应力控制型为主,该研究为超深井筒围岩稳定性控制提供理论依据。〓〓
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵兴东
李洋洋
张姝婧
陈玉民
王成龙
王玺
关键词:  超深竖井  扰动应力  稳定性分析  应力响应  弹塑性力学    
Abstract: For stability analysis of ultra-deep shaft surrounding rock, based on the elastic-plastic constitutive model and Mohr-Column failure criterion, the disturbance stress reaction process of the shaft excavation was simulated by reducing the radial support stress at the excavation boundary of shaft. The reaction mechanism of the disturbance stress was described based on the evolution of disturbance stress and failure of shaft surrounding rock, and then the results of current study on the disturbance stress mechanism of shaft longitudinal section were summarized. As the shaft goes deeper, the instability type of the new main shaft surrounding rock was divided into three categories: the structure controlling instability type, the stress controlling instability type and the transformation type from structural controlling instability to stress controlling instability. At the same time, based on the reaction mechanism of disturbance stress caused by shaft excavation and utilizing various rock failure criteria, the longitudinal instability zone was divided for the new main shaft. The calculating results showed that the structural controlling instability of shaft surrounding rock was between 0 m and 387 m, the transformation zone from structural controlling instability to stress controlling instability was between 387 m and 654.7 m, and the stress controlling instability type appeared between 654.7 m to 1 527 m.
Key words:  ultra-deep shaft    induced stress    stability analysis    stress reaction    elastic-plastic mechanics
                    发布日期:  2021-02-25      期的出版日期:  2020-12-20
中图分类号:  G305  
作者简介:  赵兴东(1975— ),男,辽宁辽中人,博士,教授,博士生导师,主要研究方向为采矿地压与控制. E-mail:zhaoxingdong@mail.neu.edu.cn
引用本文:    
赵兴东,李洋洋,张姝婧,陈玉民,王成龙,王玺. 超深井筒开挖扰动应力响应特征分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 19-28.
ZHAO Xingdong, LI Yangyang, ZHANG Shujing, CHEN Yumin, WANG Chenglong, WANG Xi. Analysis and application of disturbance stress reaction mechanism of surrounding rock during sinking ultra-deep shaft. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(4): 19-28.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2020/V2/I4/19
[1] 赵兴东.超深井建设基础理论与发展趋势[J].金属矿山,2018, 502(4):1-10. ZHAO Xingdong. Basic theory and development trends of ultra-deep shaft construction[J]. Metal Mine, 2018, 502(4): 1-10.
[2] 唐雄俊.隧道收敛约束法的理论研究与应用[D].武汉:华中科技大学,2009. TANG Junxiong. Theory and application of the convergence-confinement method of tunnel[D].Wuhan:Huazhong University of Science and Technology, 2009.
[3] HOEK E, BROWN E T. 岩石地下工程[M].连志升,田良灿,王维德,等,译.北京:冶金工业出版社, 1986.
[4] HOEK E, BROWN E T. Practical estimates of rock mass strength[J].International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8):1165-1186.
[5] DAEMEN J J. Tunnel support loading caused by rock failure[R]. Minneapolis, USA:Minnesota University, 1975.
[6] BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, 1983, 109(1): 15-39.
[7] 范鹏贤, 王明洋, 李文培. 岩土介质中圆形隧洞围岩压力理论分析进展[J].现代隧道技术, 2010, 47(2):1-7. FAN Pengxian, WANG Mingyang, LI Wenpei. Progress in theoretical analysis of ground response to circular excavations in rock and soil medium[J].Modern Tunnelling Technology, 2010, 47(2):1-7.
[8] HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek-Brown failure criterion: 2002 edition[C] //Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada Conference.Toronto, Canada:[s.n.] ,2002, 1(1): 267-273.
[9] ALEJANO L R, RODRIGUEZ-DONO A, ALONSO E, et al. Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour[J].Tunnelling and Underground Space Technology, 2009, 24(6): 689-705.
[10] CUI L, ZHENG J J, ZHANG R J, et al. Elasto-plastic analysis of a circular opening in rock mass with confining stress-dependent strain-softening behaviour[J]. Tunnelling and Underground Space Technology, 2015, 50: 94-108.
[11] ZHANG Q, JIANG B S, WANG S L, et al. Elasto-plastic analysis of a circular opening in strain-softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 38-46.
[12] ALONSO E, ALEJANO L R, VARAS F, et al. Ground response curves for rock masses exhibiting strain-softening behaviour[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(13): 1153-1185.
[13] LEE Y K, PIETRUSZCZAK S. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J].Tunnelling and Underground Space Technology, 2008, 23(5): 588-599.
[14] GUMUSOGLU M C, BRAY J W, WATSON J O. Analysis of underground excavations incorporating the strain softening of rock masses[C] //6th ISRM Congress. International Society for Rock Mechanics and Rock Engineering.[S.l.] :[s.n.] , 1987.
[15] PANET M, GUELLEC P. Contribution to the problem of the design of tunnel support behind the face[J].Progres en mecanique des roches-comptes rendus du 3eme congres de la soctiete international de mechanique des roches, 1974, 2B:1163-1168.
[16] MARC PANET. Le calcul des tunnels par la méthode convergence-confinement[M].[S.l.] :Presses Ecole Nationale Ponts Chaussees, 1995.
[17] CARRANZA-TORRES C, FAIRHURST C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology, 2000, 15(2):187-213.
[18] MCCREATH D R. Analysis of formation pressures on tunnel and shaft linings[D]. Edmonton, Canada:University of Alberta, 1980.
[19] 王迪.巷道掘进工作面超前应力峰值位置探测技术[D]. 徐州:中国矿业大学, 2016. WANG Di. Technology on the detection of advance stress peak position in the roadway driving face[D].Xuzhou:China University of Mining and Technology, 2016.
[20] 韩建新, 李术才, 李树忱. 岩体破坏的结构控制与应力控制转换机理及判据模型[J].中国科学:物理学 力学 天文学, 2013, 43(2):177-185. HAN Jianxin, LI Shucai, LI Shuchen. A model for switching mechanism and criteria of structure control and stress control on rock mass failure[J].Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(2):177-185.
[21] JAEGER J C. Shear failure of anistropic rocks[J]. Geological Magazine, 1960, 97(1):65-72.
[22] 向天兵, 冯夏庭, 陈炳瑞,等. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. 岩土力学, 2009, 30(10):2908-2916. XIANG Tianbing, FENG Xiating, CHEN Bingrui, et al. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J].Rock and Soil Mechanics, 2009, 30(10):2908-2916.
[23] 包含, 常金源, 伍法权,等. 基于统计岩体力学的岩体强度特征分析[J].岩土力学,2015,36(8):2361-2369. BAO Han, CHANG Jinyuan, WU Faquan, et al. Analysis of strength characteristics of rock mass based on statistical mechanics of rock mass[J].Rock and Soil Mechanics, 2015, 36(8):2361-2369.
[24] 陈明祥. 弹塑性力学[M].北京:科学出版社, 2007.
[1] 赵兴东, 李洋洋, 张姝婧, 陈玉民, 王成龙, 王玺. 超深井筒开挖扰动应力响应特征分析[J]. 隧道与地下工程灾害防治, 0, (): 1-10.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn