Analysis of damage evolution of rock salt under uniaxial compression in ultra-deep formation
YIN Hongwu1,2, ZHU Gengde3, ZHU Genggang4, GE Xinbo5
1. Guangzhou Expressway Co., Ltd., Guangzhou 510555, Guangdong, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; 3. School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan 243002, Anhui, China; 4. Yanzhou Public Works Section, China Railway Jinan Group Co., Ltd., Jining 272199, Shandong, China; 5. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
Abstract: To address the damage evolution of rock salt in Qianjiang, uniaxial compression tests were carried out by using the MTS815 rock mechanics test system. The specimens were collected from the target formation. The results showed that there was no obvious compaction stage in the uniaxial compression of rock salt. The stress-strain curve could be divided into three stages: initial non-damage elastic stage(very short); plastic platform stage, where the damage accumulated rapidly(very long); failure stage, where damage continued to develop. Based on the deformation and failure process of rock salt under uniaxial compression, a mathematical model of damage evolution was established. The reliability of the model was verified by the experiment, which could well reflect the stress-strain process and the damage evolution of ultra-deep rock salt in Qianjiang. In view of the splitting failure of the ultra-deep rock salt under uniaxial compression, the mechanical explanation was given. The research results have a certain guiding significance for the construction of underground salt cavern gas storage.
尹洪武, 朱耿德, 朱耿刚, 葛鑫博. 超深地层盐岩单轴压缩损伤演化过程分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 53-60.
YIN Hongwu, ZHU Gengde, ZHU Genggang, GE Xinbo. Analysis of damage evolution of rock salt under uniaxial compression in ultra-deep formation. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(4): 53-60.
[1] RABOTNOV Y N. On the equation of state of creep[J]. Proceedings of the Institution of Mechanical Engineers Conference, 1963, 178(31):117-122. [2] JANSON J, HULT J. Fracture mechanics and damage mechanics, a combined approach[J].Journal de Mecanique Appliquee, 1977, 1(1):69-84. [3] LEMAITRE J. How to use damage mechanics [J]. Nuclear Engineering & Design, 1984, 80(2):233-245. [4] KACHANOV L M, KRAJCINOVIC D. Introduction to continuum damage mechanics[J]. Journal of Applied Mechanics, 1987, 54(2): 481. [5] DOUGILL J W, LAU J C, BURT N J, et al. A theoretical model for progressive failure and softening in rock,concrete and similar materials[C] //Proceedings of the First ASCE-EMD Speciality Conference on Mechanics in Engineering. Waterloo, Canada:[s.n.] , 1976:335-355. [6] LEMAITRE J, DESMORAT R. Engineering damage mechanics[M].[S.l.] : Springer, 2005. [7] COSTIN L S. Time-dependent damage and creep of brittle rock[C] //Damage Mechanics and Continuum Modeling.[S.l.] :ASCE, 1985:25-38. [8] KRAJCINOVIC D, SILVA M A G. Statistical aspects of the continuous damage theory[J]. International Journal of Solids and Structures, 1982, 18(7): 551-562. [9] 唐春安, 徐小荷. 缺陷的演化繁衍与Kaiser效应函数[J].地震研究,1990, 13(2): 203-213. TANG Chunan, XU Xiaohe. Evolution and propagation of material defects and Kaiser effect function[J]. Journal of Seismological Research, 1990, 13(2): 203-213. [10] YAN P, ZOU Y J, LU W B, et al. Real-time assessment of blasting damage depth based on the induced vibration during excavation of a high rock slope[J].Geotechnical Testing Journal, 2016, 39(6):20150187. [11] 杨春和,白世伟,吴益民. 应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报,2000,19(3): 270-275. YANG Chunhe, BAI Shiwei, WU Yimin. Stress level and loading path effect on time dependent properties of salt rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 270-275. [12] 陈剑文,杨春和,高小平,等.盐岩温度与应力耦合损伤研究[J]. 岩石力学与工程学报, 2005, 24(11):1986-1991. CHEN Jianwen, YANG Chunhe, GAO Xiaoping, et al. Study on the coupled damage of temperature and mechanics for salt rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11):1986-1991. [13] SCHULZE O, POPP T, KERN H. Development of damage and permeability in deforming rock salt[J].Engineering Geology, 2001, 61(2/3): 163-180. [14] CHAN K S, BODNER S R, FOSSUM A F, et al. A damage mechanics treatment of creep failure in rock salt[J]. International Journal of Damage Mechanics, 1997, 6(2): 121-152. [15] LI J, SHI X, ZHANG S. Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns[J]. Energy, 2020, 203:117840. [16] MA H L, YANG C H, LI Y P, et al. Stability evaluation of the underground gas storage in rock salts based on new partitions of the surrounding rock[J]. Environmental Earth Sciences, 2015, 73(11): 6911-6925. [17] SHI X L, LI Y P, YANG C H, et al. Influences of filling abandoned salt caverns with alkali wastes on surface subsidence[J].Environmental Earth Sciences, 2015, 73(11): 6939-6950. [18] YIN H W, YANG C H, MA H L, et al. Stability evaluation of underground gas storage salt caverns with micro-leakage interlayer in bedded rock salt of Jintan, China[J]. Acta Geotechnica, 2020, 15(3):549-563. [19] YIN H W, YANG C H, MA H L, et al. Study on damage and repair mechanical characteristics of rock salt under uniaxial compression[J].Rock Mechanics and Rock Engineering, 2019, 52(3): 659-671. [20] 尹洪武, 马洪岭, 施锡林,等. 盐穴储气库泥岩夹层渗透性测试新方法[J]. 岩土力学, 2017, 38(8):2241-2248. YIN Hongwu, MA Hongling, SHI Xilin, et al. A new method for permeability test on mudstone interlayer in a salt cavern gas storage[J].Rock and Soil Mechanics, 2017, 38(8): 2241-2248. [21] LI J, YAO T, SHI X, et al. Modeling the construction of energy storage salt caverns in bedded salt[J]. Applied Energy, 2019, 255:113866. [22] ZHANG N, SHI X L, WANG T T, et al. Stability and availability evaluation of underground strategic petroleum reserve(SPR)caverns in bedded rock salt of Jintan, China[J]. Energy, 2017, 134: 504-514. [23] 梁卫国, 徐素国,赵阳升. 损伤岩盐高温再结晶剪切特性的试验研究[J].岩石力学与工程学报, 2004, 23(20):3413-3417. LIANG Weiguo, XU Suguo,ZHAO Yangsheng. Experimental study on heating recrystallization effect on shear characteristics of damaged rock salt[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20):3413-3417. [24] 蔡美峰. 岩石力学与工程[M].北京:科学出版社,2002. [25] 郭印同,赵克烈,孙冠华,等. 周期荷载下盐岩的疲劳变形及损伤特性研究[J].岩土力学, 2011,32(5):1353-1359. GUO Yintong, ZHAO Kelie, SUN Guanhua, et al. Experimental study of fatigue deformation and damage characteristics of salt rock under cyclic loading[J]. Rock and Soil Mechanics, 2011, 32(5): 1353-1359. [26] LEMAITRE J. Evaluation of dissipation and damage in metals submitted to dynamic loading[C] //Proceedings of the International Conference of Mechanical Behavior of Materials.[S.l.] :[s.n.] , 1971: 1-36. [27] MAZARS J. Application de la mecanique de l'end-ommagement au comportement non lineaire et a la rupture du beton de structure[D]. Paris, France: Université de Paris, 1984. [28] 马洪岭. 超深地层盐岩地下储气库可行性研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所), 2010. MA Hongling. Study on feasibility of rock salt underground gas storage in ultra-deep formation[D].Wuhan:Graduate University of Chinese Academy of Sciences(Wuhan Institute of Rock & Soil Mechanics), 2010. [29] 陈结, 范金洋, 姜德义,等. 盐岩应变硬化自弱化现象研究[J]. 岩石力学与工程学报, 2015,34(8):1612-1618. CHEN Jie, FAN Jinyang, JIANG Deyi,et al. Study on phenomenon of self-weakening of strain hardening of salt rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8):1612-1618.