Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (2): 81-89    DOI: 10.19952/j.cnki.2096-5052.2022.02.10
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
大跨径地下罐室穹顶预留中心岩柱开挖施工围岩稳定性模拟
赵文强1,周建伟2,袁兆廷3,吴铭祥4*,蒋亚龙4,耿大新4,刘长红3
1.中铁第一勘察设计院集团有限公司, 陕西 西安 710043;2.东部战区空军设计院, 江苏 南京 210000;3.中铁二十四局集团南昌铁路工程有限公司, 江西 南昌 330000;4.华东交通大学土木建筑学院, 江西 南昌 330013
Simulation of surrounding rock stability of excavation and construction of reserve center rock pillar in the dome of large-span underground tank chamber
ZHAO Wenqiang1, ZHOU Jianwei2, YUAN Zhaoting3, WU Mingxiang4*, JIANG Yalong4, GENG Daxin4, LIU Changhong3
1. China Railway First Survey and Design Institute Group Co., Ltd., Xi'an 710043, Shaanxi, China;
2. Eastern Theater Air Force Design Institute, Nanjing 210000, Jiangsu, China;
3. Nanchang Railway Engineering Co., Ltd., China Railway 24th Bureau Group, Nanchang 330000, Jiangxi, China;
4. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, Jiangxi, China
下载:  PDF (10675KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用大型有限元分析软件MIDAS/GTS,对江西某地下油气储备工程地下储油罐单个罐室的开挖支护全过程进行数值模拟,重点分析罐室开挖完成后围岩位移场、应力场和塑性区分布特征,研究穹顶开挖预留中心岩柱对拱顶中心围岩竖向位移、拱脚围岩水平位移的影响。研究表明:围岩最大竖向位移发生在拱顶和底板,拱顶围岩最大下沉量达12.71 mm,底板围岩最大隆起达17.96 mm,最大水平位移发生在罐室侧墙,为1.99 mm,穹顶拱脚附近塑性区分布明显,总体围岩变形不大,位移场、应力场和塑性区特性基本都满足罐室稳定性要求;穹顶开挖预留中心岩柱在穹顶开挖支护过程中对围岩水平位移几乎无影响,对拱顶中心围岩下沉有一定的限制作用,但中心岩柱撤除后,拱顶中心围岩位移会突变至与无中心岩柱方案几乎一致,对罐室开挖支护完成后限制围岩整体竖向位移基本贡献不大;在围岩条件较好的情况下,穹顶开挖时可考虑挑顶整体开挖,无需预留中心岩柱,能节约施工成本,也能同时满足围岩稳定性要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵文强
周建伟
袁兆廷
吴铭祥
蒋亚龙
耿大新
刘长红
关键词:  地下罐室  大跨径穹顶  开挖支护  预留中心岩柱  围岩稳定性    
Abstract: The large finite element analysis software MIDAS/GTS was used to numerically simulate the whole process of excavation and support of a single tank chamber of an underground oil and gas storage tank in Jiangxi, focusing on the analysis of the displacement field, stress field and plastic zone distribution characteristics of the surrounding rock after the excavation of the tank chamber was completed, and to study the influence of the central rock column reserved for the excavation of the dome on the vertical displacement of the surrounding rock at the center of the vault and the horizontal displacement of the surrounding rock at the foot of the vault. The research showed that the maximum vertical displacement of the surrounding rock occured in the vault and the bottom plate, the maximum sinking of the surrounding rock in the vault reached 12.71 mm, the maximum uplift of the surrounding rock in the bottom plate reached 17.96 mm, the maximum horizontal displacement occur in the side wall of the tank chamber, which was 1.99 mm, the distribution of the plastic zone near the foot of the dome was obvious, the overall deformation of the surrounding rock was not large, the displacement field, stress field and plastic zone characteristics basically met the stability requirements of the tank chamber. The center rock column reserved for dome excavation had almost no effect on the horizontal displacement of the surrounding rock during the excavation and support of the dome, and had a certain limiting effect on the sinking of the surrounding rock in the center of the vault, but after the removal of the center rock column, the displacement of the surrounding rock in the center of the vault changed abruptly to almost the same as the solution without the center rock column, and the basic contribution to limiting the overall vertical displacement of the surrounding rock after the excavation and support of the tank chamber was completed was not significant; In the case of better surrounding rock conditions, the dome excavation could be considered as a whole, without reserving the central rock column, which could save the construction cost and also meet the stability requirements of the surrounding rock.
Key words:  underground tank room    long-span dome    excavation and support    reserved central rock pillar    surrounding rock stability
收稿日期:  2021-12-20      修回日期:  2022-03-01      发布日期:  2022-06-20     
中图分类号:  TU457  
基金资助: 江西省交通运输厅科学技术研究资助项目(2021Z0004);江西省自然科学基金资助项目(20212BAB204012);江西省教育厅科学技术研究资助项目(GJJ190300)
通讯作者:  吴铭祥(1997— ),男,江西吉安人,硕士研究生,主要研究方向为岩土工程.    E-mail:  wu_ming_xiang@163.com
作者简介:  赵文强(1988— ),男,山西文水人,硕士,高级工程师,主要研究方向为轨道交通与地下洞室. E-mail:790381954@qq.com.
引用本文:    
赵文强, 周建伟, 袁兆廷, 吴铭祥, 蒋亚龙, 耿大新, 刘长红. 大跨径地下罐室穹顶预留中心岩柱开挖施工围岩稳定性模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 81-89.
ZHAO Wenqiang, ZHOU Jianwei, YUAN Zhaoting, WU Mingxiang, JIANG Yalong, GENG Daxin, LIU Changhong. Simulation of surrounding rock stability of excavation and construction of reserve center rock pillar in the dome of large-span underground tank chamber. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 81-89.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I2/81
[1] 袁光杰,夏焱,金根泰,等. 国内外地下储库现状及工程技术发展趋势[J]. 石油钻探技术, 2017, 45(4): 8-14. YUAN Guangjie, XIA Yan, JIN Gentai, et al. Present state of underground storage and development trends in engineering technologies at home and abroad[J]. Petroleum Drilling Techniques, 2017, 45(4): 8-14.
[2] 洪开荣. 地下水封能源洞库修建技术的发展与应用[J]. 隧道建设, 2014,34(3): 188-197. HONG Kairong. Development and application of construction technologies for underground water-sealed energy storage caverns[J]. Tunnel Construction, 2014, 34(3): 188-197.
[3] 刘小刚.复杂地质条件下大型地下洞室球冠状穹顶开挖施工技术[J].铁道建筑技术,2016(7):25-28. LIU Xiaogang. Construction technology for spherical dome excavation of large-scale underground cavern under complicated geological conditions[J]. Railway Construction Technology, 2016(7): 25-28.
[4] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012,31(10): 1945-1956. QIAN Qihu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956.
[5] 朱义欢,邵国建. 地下洞室围岩短长期稳定性的评判准则综述[J]. 地下空间与工程学报, 2013, 9(增刊2): 2093-2098. ZHU Yihuan, SHAO Guojian. Review of criterion for short and long-term stability evaluation of underground rock mass[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(Suppl.2): 2093-2098.
[6] 张恩宝,孔张宇,王兰普, 等. 丰宁抽水蓄能电站地下厂房围岩稳定性分析[J]. 人民长江, 2021,52(8): 151-157. ZHANG Enbao, KONG Zhangyu, WANG Lanpu, et al. Surrounding rock stability of underground powerhouse in Fengning pumped storage power station[J]. Yangtze River, 2021, 52(8): 151-157.
[7] 费文平,张建美,崔华丽, 等. 深部地下洞室施工期围岩大变形机制分析[J]. 岩石力学与工程学报, 2012, 31(增刊1): 2783-2787. FEI Wenping, ZHANG Jianmei, CUI Huali, et al. Large deformation mechanism analysis of surrounding rocks in deep underground cavern during construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Suppl.1): 2783-2787.
[8] 徐哲,王颖轶,李科,等. 大型地下洞室群变形实测与数值模拟[J]. 上海交通大学学报, 2015, 49(7): 1005-1009. XU Zhe, WANG Yingyi, LI Ke, et al. Deformation measurement and numerical stimulation of large-scale underground cavern[J]. Journal of Shanghai Jiao Tong University, 2015, 49(7): 1005-1009.
[9] 曾继坤,彭强,陈熠,等. 复杂地质条件下的地下洞室群施工期围岩稳定分析[J]. 水力发电, 2019,45(11): 62-66. ZENG Jikun, PENG Qiang, CHEN Yi, et al. Surrounding rock stability analysis of underground Caverns under complex geological conditions during construction period[J]. Water Power, 2019, 45(11): 62-66.
[10] 麦锦锋,李端有,黄祥,等. 乌东德水电站右岸地下厂房施工期围岩稳定分析[J]. 长江科学院院报, 2016, 33(5): 42-47. MAI Jinfeng, LI Duanyou, HUANG Xiang, et al. Rock stability of the right bank underground powerhouse of Wudongde Hydropower Station during construction[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(5): 42-47.
[11] 黄康鑫,袁平顺,徐富刚,等. 大型地下硐室群施工期围岩应力变形及稳定分析[J]. 水利水运工程学报, 2016(2):89-96. HUANG Kangxin, YUAN Pingshun, XU Fugang, et al. Stress deformation and stability analysis for surrounding rock mass during construction of large underground caverns[J]. Hydro-Science and Engineering, 2016(2): 89-96.
[12] 朱维申,李勇,张磊,等. 高地应力条件下洞群稳定性的地质力学模型试验研究[J]. 岩石力学与工程学报, 2008,27(7): 1308-1314. ZHU Weishen, LI Yong, ZHANG Lei, et al. Geomechanical model test on stability of cavern group under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7):1308-1314.
[13] 李超,叶明亮,向喜琼,等. 北盘江电站地下厂房群施工过程数值分析[J]. 地下空间与工程学报, 2016, 12(6):1637-1644. LI Chao, YE Mingliang, XIANG Xiqiong, et al. Numerical simulation of the excavation process of Beipan River Hydropower, Station underground Caverns[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(6): 1637-1644.
[14] 钱震伟. 地下厂房洞室群施工过程的三维数值模拟分析[J]. 四川水力发电, 2009, 28(5): 88-89. QIAN Zhenwei. Three dimensional numerical simulation analysis on underground powerhouse complex construction[J]. Sichuan Water Power, 2009, 28(5): 88-89.
[15] 张德永,王玉洲,方浩亮,等. 江边水电站地下洞室群围岩稳定性数值分析[J].地下空间与工程学报,2015,11(3):673-679. ZHANG Deyong, WANG Yuzhou, FANG Haoliang, et al. Numerical analysis of the surrounding rock stability of the underground cavern group at Jiangbian Hydropower Station[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 673-679.
[16] 李睿,张蕊,徐云海,等. 深埋大型地下洞室群围岩稳定性三维数值模拟[J]. 水力发电, 2016,42(5): 16-19. LI Rui, ZHANG Rui, XU Yunhai, et al. 3-D numerical modeling for surrounding rock stability of deep buried large underground caverns[J]. Water Power, 2016, 42(5):16-19.
[17] 彭涛,陈景涛,李新平. 地下厂房洞室群围岩开挖过程数值模拟[J]. 建材世界, 2010, 31(1): 110-112. PENG Tao, CHEN Jingtao, LI Xinping. Numerical analysis of groups of underground cavity powerhouse during excavation process[J]. The World of Building Materials, 2010, 31(1): 110-112.
[18] 陈景涛,朱进明,苏国韶. 高地应力下地下洞室群开挖过程的数值模拟[J]. 华中科技大学学报(城市科学版), 2009,26(4):5-9. CHEN Jingtao, ZHU Jinming, SU Guoshao. Numerical simulation for excavation of underground caverns under high geostress conditions[J]. Journal of Huazhong University of Science and Technology(Urban Science Edition), 2009, 26(4):5-9.
[19] 邬凯,盛谦,张勇慧.大岗山水电站地下洞室群施工过程数值模拟分析[J]. 水力发电, 2009, 35(7): 20-23. WU Kai, SHENG Qian, ZHANG Yonghui. Numerical simulation analysis of the excavation process of Dagangshan underground carven group[J]. Water Power, 2009, 35(7): 20-23.
[20] 姚强,杨兴国,刘勇林,等. 大型地下厂房洞室群施工期围岩变形分析[J]. 地下空间与工程学报, 2014, 10(5): 1164-1169. YAO Qiang, YANG Xingguo, LIU Yonglin, et al. Deformation of surrounding rock mass of large underground powerhouse cavern groups during their construction[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(5): 1164-1169.
[21] 张治军, 苏利军, 李锋. 地下核反应堆洞室大型穹顶施工三维模拟研究[J]. 人民长江, 2016, 47(3):59-62. ZHANG Zhijun, SU Lijun, LI Feng. Three-dimensional simulation study on the construction of large domes in underground nuclear reactor caverns[J]. Yangtze River, 2016, 47(3):59-62.
[1] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[2] 左宇军,万入祯,孙文吉斌,刘镐,林健云,娄义黎. 不同开挖工法对含煤系岩层隧道围岩稳定性影响[J]. 隧道与地下工程灾害防治, 2019, 1(4): 64-74.
[3] 高源, 杨天鸿, 辛全明, 刘飞跃. 北山隧道式大跨度地下四季滑雪场围岩稳定性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 109-115.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn