Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (2): 98-106    DOI: 10.19952/j.cnki.2096-5052.2022.02.12
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
渗流作用下粉质黏土地层超深基坑危害数值模拟分析
朱晓天
中铁十四局集团有限公司, 山东 济南 250000
Numerical simulation analysis of ultra-deep foundation pit in silty clay formation under seepage
ZHU Xiaotian
China Railway 14th Bureau Group Co., Ltd., Jinan 250000, Shandong, China
下载:  PDF (18777KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以济南黄河隧道深基坑工程为依托,结合三维数值模拟系统研究考虑渗流及未考虑渗流两种情况下粉质黏土地层超深基坑开挖变形规律,将数值模拟结果与现场实测数据作对比,最终掌握渗流对粉质黏土地层超深基坑开挖的危害模式。对于粉土、黏土这一类较软的土选用修正Mohr-Coulomb模型,对于砂土这类摩擦系数较高的土采用Mohr-Coulomb模型,对渗流作用下基坑开挖中主要的15个阶段进行模拟,分析考虑渗流及不考虑渗流两种情况下基坑开挖对地表沉降、地下连续墙水平位移及对基坑底部隆起的影响。研究发现:渗流对基坑变形具有较大影响,考虑渗流作用下的变形大于未考虑渗流时。现场施工时,如果不考虑渗流作用而进行深基坑设计,会造成极大的判断误差,使工程具有较大的安全隐患。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱晓天
关键词:  超深基坑  渗流作用  粉质黏土地层  危害模式    
Abstract: Based on the deep foundation pit project of Yellow River Tunnel in Jinan, this paper studied the deformation rules of ultra-deep foundation pit in considering seepage and not seepage.The numerical simulation results were compared with the field measured data, and the final seepage hazard mode to the excavation of the ultra-deep foundation pit in the silty clay formation was mastered. Mohr-Coulomb model was modified for soft clay and clay. For soil with higher friction coefficient like sand, the Mohr-Coulomb model was adopted.The main 15 stages of foundation pit excavation under seepage were simulated, and the influence of foundation pit excavation on the surface settlement, the horizontal displacement of the underground continuous wall, and the influence on the bottom uplift of the foundation pit were finally analyzed. It was found that the seepage greatly affected the deformation of the foundation pit, which was greater than the posterior deformation value when the seepage was not considered. In the site construction, if the deep foundation pit design was conducted without considering the seepage action, it would cause great judgment error and make the project have great safety risks. The study in this paper provides empirical guidance for similar engineering.
Key words:  super deep foundation pit    seepage effect    powder clay formation    hazard mode
收稿日期:  2022-01-24      修回日期:  2022-05-24      发布日期:  2022-06-20     
中图分类号:  U25  
作者简介:  朱晓天(1988— ),男,山东济宁人,工程师,主要研究方向为地下工程. E-mail:1047638716@qq.com
引用本文:    
朱晓天. 渗流作用下粉质黏土地层超深基坑危害数值模拟分析[J]. 隧道与地下工程灾害防治, 2022, 4(2): 98-106.
ZHU Xiaotian. Numerical simulation analysis of ultra-deep foundation pit in silty clay formation under seepage. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 98-106.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I2/98
[1] 汤友富. 超级高铁发展趋势及关键问题分析[J]. 铁道建筑技术, 2019(4): 1-4. TANG Youfu. Research on the development trend and analysis of key problems of hyperloop[J]. Railway Construction Technology, 2019(4): 1-4.
[2] 刘俊生, 卢金芳, 胡园园. 测量不确定度分析方法在基坑水平位移监测中的应用[J]. 城市勘测, 2019(3): 168-171. LIU Junsheng, LU Jinfang, HU Yuanyuan. Horizontal displacement monitoring of foundation pit using measurement uncertainty analysis[J]. Urban Geotechnical Investigation & Surveying, 2019(3): 168-171.
[3] 朱小藻. 复合地层盾构隧道施工环境影响及参数敏感性研究[J]. 铁道建筑技术, 2019(1): 6-11. ZHU Xiaozao. Research on environmental impact and parameter sensitivity during shield tunnelling in composite stratum[J]. Railway Construction Technology, 2019(1): 6-11.
[4] BOLTON M D, LAM S Y, OSMAN A S. Supporting excavations in clay-from analysis to decision-making[C] // Geotechnical Aspects of Underground Construction in Soft Ground-Proceedings of the 6th International Symposium. [S.l.] :[s.n.] , 2009: 15-28.
[5] 张飞, 李镜培, 唐耀. 考虑水位和孔压影响的基坑抗隆起稳定性上限分析[J]. 岩土力学, 2011, 32(12): 3653-3659. ZHANG Fei, LI Jingpei, TANG Yao. Basal-heave stability of excavations considering groundwater level and pore water pressure fluctuations by upper bound method[J]. Rock and Soil Mechanics, 2011, 32(12): 3653-3659.
[6] 刘海燕. 深基坑监测数据分析与变形预测研究[D]. 北京: 北京交通大学, 2012. LIU Haiyan. Study on monitoring data analysis and deformation prediction of deep foundation pit[D]. Beijing: Beijing Jiaotong University, 2012.
[7] 吴世兴. 深基坑悬挂式帷幕的渗流分析[J]. 福建建设科技, 2009(5): 4-5. WU Shixing. Seepage analysis of pensile curtain for deep pit[J]. Fujian Construction Science & Technology, 2009(5): 4-5.
[8] 徐中华, 王卫东. 深基坑变形控制指标研究[J]. 地下空间与工程学报, 2010, 6(3): 619-626. XU Zhonghua, WANG Weidong. Deformation control criteria of deep excavations[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(3): 619-626.
[9] 杨敏, 周洪波, 杨桦. 基坑开挖与临近桩基相互作用分析[J]. 土木工程学报, 2005, 38(4): 91-96. YANG Min, ZHOU Hongbo, YANG Hua. Numerical analysis of pile response due to unsupported excavation-induced lateral soil movement[J]. China Civil Engineering Journal, 2005, 38(4): 91-96.
[10] 王江荣, 梁永平, 赵振学. 基于有限元分析的地铁车站明挖深基坑边坡稳定性分析[J]. 工程质量, 2019, 37(1): 54-58. WANG Jiangrong, LIANG Yongping, ZHAO Zhenxue. Slope stability analysis of open cut deep foundation pit of subway station based on finite element analysis[J]. Construction Quality, 2019, 37(1): 54-58.
[11] 郭楠. 兰州地铁车站某深基坑桩撑支护结构施工监测与数值模拟分析[D]. 兰州: 兰州理工大学, 2014. GUO Nan. Lanzhou subway station deep foundation pit pile-strut bracing structure construction monitoring and numerical simulationanalysis[D]. Lanzhou: Lanzhou University of Technology, 2014.
[12] 刘俊岩. 《建筑基坑工程监测技术规范》GB50497—2009研究与编制[J]. 施工技术, 2009, 38(5):1-4. LIU Junyan. Research and compilation of technical code for monitoring of building excavation engineering GB50497—2009[J]. Construction Technology, 2009, 38(5):1-4.
[13] DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain insoils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653
[14] 李天龙. 基坑开挖变形监测及数值模拟分析研究[D]. 合肥: 合肥工业大学, 2012. LI Tianlong. Monitoring and simulation analysis and research on excavation of foundation pit[D]. Hefei: Hefei University of Technology, 2012.
[15] NG C WW, LINGS M L. Effects of modeling soil nonlinearity and wall installation on back-analysis of deep excavation in stiff clay[J]. Journal of Geotechnical Engineering, 1995, 121(10): 687-695.
[16] FINNO R J, BLACKBURN J T, ROBOSKI J F. Three-dimensional effects for supported excavations inclay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 30-36.
[17] 谢明星, 郑俊杰, 曹文昭, 等. 有限填土路堤挡土墙主动土压力研究[J]. 华中科技大学学报(自然科学版), 2019, 47(2): 1-6. XIE Mingxing, ZHENG Junjie, CAO Wenzhao, et al. Study of active earth pressure against embankment retaining wall of limited backfill[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019, 47(2): 1-6.
[18] 张道兵, 蔚彪, 张静, 等. 考虑Baker准则和孔压效应的隧道掌子面支护力上限分析[J]. 铁道科学与工程学报, 2020, 17(9): 2311-2319. ZHANG Daobing, YU Biao, ZHANG Jing, et al. Upper limit analysis of tunnel face support force considering Baker criterion and pore pressure effect[J]. Journal of Railway Science and Engineering, 2020, 17(9): 2311-2319.
[19] 余伟健, 高谦. 大面积充填采矿时的流固耦合数值分析及优化[J].矿业工程研究, 2009, 24(4): 11-17. YU Weijian, GAO Qian. Numerical analysis of fluid-solid coupling on large range filling mining and optimization[J]. Mineral Engineeering Reseach, 2009, 24(4): 11-17.
[20] 李姝, 吕城. 考虑孔隙水压力和非线性M-C准则的深埋隧道掌子面稳定性分析[J]. 公路, 2019, 64(12): 322-327.
[1] 杨洪希,黄伟,王树英,令凡琳,刘朋飞. 粉质黏土地层土压平衡盾构渣土改良技术[J]. 隧道与地下工程灾害防治, 2020, 2(2): 76-82.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn