Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (3): 47-57    DOI: 10.19952/j.cnki.2096-5052.2025.03.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于JHB-4D-LSM的含软弱夹层隧道围岩爆破动力分析
马建军1,2,3,沈琨越1,2,郑楠4,黄伟真1,2*,肖海华5
1.中山大学土木工程学院, 广东 珠海 519082;2.隧道工程灾变防控与智能建养全国重点实验室(中山大学), 广东 珠海 519082;3.强脉冲辐射环境模拟与效应全国重点实验室, 陕西 西安 710024;4.广东省高速公路有限公司, 广东 广州 510199;5.武汉一合图工程设计咨询有限公司, 湖北 武汉 430056
Blasting analysis of tunnel surrounding rock with weak interlayers based on JHB-4D-LSM
MA Jianjun1,2, SHEN Kunyue1, ZHENG Nan3, HUANG Weizhen1*, XIAO Haihua4
1. School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, Guangdong, China;
2. State Key Laboratory for Tunnel Engineering, Sun Yat-sen University, Zhuhai 519082, Guangdong, China;
3. National Key Laboratory of Intense Pulsed Radiation Simulation and Effect(NKLIPR), Xi'an 710024, Shaanxi, China;
4. Guangdong Expressway Co., Ltd., Guangzhou 510199, Guangdong, China;
5. WuhanYihetu Engineering Design Consulting Co., Ltd., Wuhan 430056, Hubei, China
下载:  PDF (33444KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为精确模拟含软弱夹层的隧道爆破应力波传播过程,探究爆破振动穿越软弱层前后的动力响应规律,本研究基于JHB-4D-LSM(Johnson-Holmquist-Beissel-four-dimensional lattice spring model)连续-非连续方法,建立单孔爆破数值模型,重点分析不同爆破距离、夹层厚度及倾角等因素的影响。结果表明:基于JHB-4D-LSM模型模拟了隧道爆破应力波传播过程,计算结果与LS-DYNA模拟结果吻合较好,验证了该方法的有效性。软弱夹层的迎波面岩体局部应力集中、峰值应力增加,背波面岩体应力峰值降低;说明夹层具有双重作用,应波面应力增强及背波面应力衰减,且双重作用效应随着软弱夹层厚度的增加,呈正相关的关系,对施工安全控制具有指导意义。软弱夹层与炮孔距离越小,夹层迎波面岩体应力集中现象越明显,当两者的距离大于30 cm时,软弱夹层对应力传播的影响减小;软弱夹层倾角对爆破应力波传播的影响,主要取决于炮孔与软弱夹层的垂直距离,垂直距离越小,炮孔附近岩体的应力峰值越高,应力阻隔效应越明显。本研究结果为软弱层发育地区隧道爆破振动控制技术的优化提供了借鉴和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马建军
沈琨越
郑楠
黄伟真
肖海华
关键词:  连续-非连续方法  JHB-4D-LSM  软弱夹层  围岩应力  爆破响应    
Abstract: As a typical unfavorable geological feature commonly encountered in tunnel construction, weak interlayers significantly affected the propagation characteristics of blasting-induced stress waves, thereby posing adverse impacts on construction safety and engineering quality. To accurately simulate blast stress wave propagation in tunnels containing weak interlayers, blasting-induced dynamic responses were modeled. A single-hole blasting numerical model was established using a continuous-discontinuous method—the Johnson-Holmquist-Beissel model within the four-dimensional lattice spring model(JHB-4D-LSM). The effects of blast-interlayer distance, interlayer thickness, and dip angles were investigated. Tunnel blasting stress wave propagation simulated by the JHB-4D-LSM model aligned well with prior LS-DYNA studies, validating the method's effectiveness. Localized stress concentration and increased peak stress were observed in the incident-wave-facing rock mass adjacent to the weak interlayer, while the peak stress decreased on the opposite side. This indicated the weak interlayer's dual role: enhancing stress on the incident-wave-facing side and attenuating stress on the transmission side. This effect intensified with greater interlayer thickness, showing a positive correlation. As the distance between the weak interlayer and the blast-hole decreased, stress concentration on the incident-wave-facing side became increasingly significant. When this distance exceeded 30 cm, the interlayer's influence on stress wave propagation was notably reduced. The dip angle's effect on stress wave propagation was governed primarily by the vertical distance between the blast-hole and the interlayer. Smaller vertical distances resulted in higher peak stresses, indicating a more pronounced stress wave impedance effect. This study provided valuable guidance for ensuring construction safety and offered a theoretical basis for optimizing blasting vibration control technology in tunnel engineering.
Key words:  continuous-discontinuous method    JHB-4D-LSM    weak interlayer    surrounding rock stress    blasting responseReceived:2025-03-31    Revised:2025-05-20    Accepted:2025-06-04    Published:2025-09-20
发布日期:  2025-09-19     
中图分类号:  U43  
基金资助: 国家自然科学基金资助项目(52278222);强脉冲辐射环境模拟与效应全国重点实验室开放资助项目(NKLIPR2308);高速公路科研资助项目(HT-99982024-1318)
作者简介:  马建军(1983— ),男,湖北襄阳人,副教授,博士生导师,博士,主要研究方向为爆炸冲击及隧道与地下工程. E-mail: majianjun@mail.sysu.edu.cn . *通信作者简介:黄伟真(1998— ),男,福建福州人,博士研究生,主要研究方向为隧道与地下工程. E-mail:huangwzh37@mail2.sysu.edu.cn
引用本文:    
马建军,沈琨越,郑楠,黄伟真,肖海华. 基于JHB-4D-LSM的含软弱夹层隧道围岩爆破动力分析[J]. 隧道与地下工程灾害防治, 2025, 7(3): 47-57.
MA Jianjun, SHEN Kunyue, ZHENG Nan, HUANG Weizhen, XIAO Haihua. Blasting analysis of tunnel surrounding rock with weak interlayers based on JHB-4D-LSM. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(3): 47-57.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I3/47
[1] 贾帅龙, 王志亮, 熊峰, 等. 充填节理岩体中应力波传播特性研究[J]. 合肥工业大学学报(自然科学版), 2021, 44(8): 1073-1081. JIA Shuailong, WANG Zhiliang, XIONG Feng, et al. Study on propagation characteristics of stress wave in rockmass with filled joint[J]. Journal of Hefei University of Technology(Natural Science), 2021, 44(8): 1073-1081.
[2] 皮锦添, 徐奴文, 张丰收, 等. 基于微震监测与DFN模拟的金川水电站尾闸室破坏机制[J]. 隧道与地下工程灾害防治,2024, 6(3): 60-72. PI Jintian, XU Nuwen, ZHANG Fengshou, et al. Failure mechanism of tailrace surge chamber in Jinchuan Hydropower Station based on microseismic monitoring and DFN simulation[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(3): 60-72.
[3] 张腾, 刘连生, 刘昇, 等. 不同倾角充填结构面对爆破振动的演化特征与应力波反射规律研究[J]. 工程爆破, 2024, 30(6): 41-55. ZHANG Teng, LIU Liansheng, LIU Sheng, et al. Response characteristics and reflection law of blast stress wave propagation in filling structures with different inclination angles[J]. Engineering Blasting, 2024, 30(6): 41-55.
[4] LIU X R, HAN Y F, LI D L, et al. Anti-pull mechanisms and weak interlayer parameter sensitivity analysis of tunnel-type anchorages in soft rock with underlying weak interlayers[J]. Engineering Geology, 2019, 253: 123-136.
[5] 徐叶勤, 李梅, 姚俊伟, 等. 爆破荷载对含软弱夹层隧道围岩稳定性和变形破坏特征的影响[J]. 爆破, 2020, 37(2): 35-41. XU Yeqin, LI Mei, YAO Junwei, et al. Influence of blasting load on stability and deformation failure characteristics of tunnel surrounding rock mass with weak interlayer[J]. Blasting, 2020, 37(2): 35-41.
[6] 刘迪, 吴立辉, 顾云, 等. 软弱夹层对岩石爆破裂纹扩展影响的研究[J]. 工程爆破, 2023, 29(4): 52-60. LIU Di, WU Lihui, GU Yun, et al. Study on the influence of weak interlayer on the crack propagation of rock blasting[J]. Engineering Blasting, 2023, 29(4): 52-60.
[7] 杜鑫, 甯尤军, 杨军. 地下层状岩体爆破的DDA方法模拟研究[J]. 地下空间与工程学报, 2023, 19(3): 955-961. DU Xin, NING Youjun, YANG Jun. Simulation of underground layered rock blasting by the DDA method[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(3): 955-961.
[8] ZHANG Z H, GAO W L, LI K P, et al. Numerical simulation of rock mass blasting using particle flow code and particle expansion loading algorithm[J]. Simulation Modelling Practice and Theory, 2020, 104: 102119.
[9] 孔祥振, 方秦. 基于SPH方法对强动载下混凝土结构损伤破坏的数值模拟研究[J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 25-33. KONG Xiangzhen, FANG Qin. Numerical predictions of failures in concrete structures subjected to intense dynamic loadings using the Smooth Particle Hydrodynamics method[J]. Scientia Sinica(Physica, Mechanica & Astrono-mica), 2020, 50(2): 25-33.
[10] ZHAO G F. Developing a four-dimensional lattice spring model for mechanical responses of solids[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 881-895.
[11] 赵高峰, 徐志超, 郝益民, 等. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19. ZHAO Gaofeng, XU Zhichao, HAO Yimin, et al. Numerical modeling of vibration and damage of surrounding rock in tunnel blasting by using 4D-LSM[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 11-19.
[12] MA J J, CHEN J J, GUAN J W, et al. Implementation of Johnson-Holmquist-Beissel model in four-dimensional lattice spring model and its application in projectile penetration[J]. International Journal of Impact Engineering, 2022, 170: 104340.
[13] MA J J, YIN P J, HUANG L C, et al. The application of distinct lattice spring model to zonal disintegration within deep rock masses[J]. Tunnelling and Underground Space Technology, 2019, 90: 144-161.
[14] 马建军, 李诚豪, 关俊威, 等. 地铁隧道上方近距离爆炸动力响应研究[J]. 铁道科学与工程学报, 2023, 20(6): 2246-2255. MA Jianjun, LI Chenghao, GUAN Junwei, et al. Research on the dynamic response of close-range explosion above a subway tunnel[J]. Journal of Railway Science and Engineering, 2023, 20(6): 2246-2255.
[15] LEI M F, HE R, LIU L H, et al. Mechanical mechanism and shaping effect of tunnel blasting construction in rock with weak interlayer[J]. Sustainability, 2022, 14(20): 13278.
[16] JOHNSON G R, HOLMQUIST T J, BEISSEL S R. Response of aluminum nitride(including a phase change)to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 2003, 94(3): 1639-1646.
[1] 李连祥,吕桂青,张尚儒,赵永新,汪楚涵. 软弱夹层基坑圆弧-平面整体破坏模式分析与治理[J]. 隧道与地下工程灾害防治, 2024, 6(3): 1-11.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn