Abstract: To calculate the load-sharing ratio of surrounding rock in deeply buried pressure pipelines under internal water pressure, a computational model was established based on the power series solution method of complex variable functions. This model considered the interactions among the steel lining, concrete lining, and surrounding rock, as well as the influence of gaps. By solving the potential function for each supporting component, the stress and deformation at any point within their domains, along with the load-sharing ratio of the surrounding rock, could be determined. Subsequently, the effects of internal water pressure magnitude, gap size, and surrounding rock type on the load-sharing ratio were investigated. The calculation results agreed well with numerical simulations. The results indicated that: The pipeline expansion caused by internal water pressure decreased with increasing distance from the pipe; The load-sharing ratio of the surrounding rock was influenced to varying degrees by the internal water pressure, gap size, and surrounding rock type, with gap size being the most sensitive factor—even millimeter-scale gaps significantly reduced the ratio; The load-sharing proportion during combined bearing was determined by the stiffness of each supporting component.
袁明道, 刘宜杰, 黄本胜, 杨逢杰, 张旭辉. 深埋压力管道联合承载分担率计算方法[J]. 隧道与地下工程灾害防治, 2025, 7(4): 21-32.
YUAN Mingdao, LIU Yijie, HUANG Bensheng, YANG Fengjie, ZHANG Xuhui. Calculation method of combined load-sharing ratio of deep-buried pressure pipelines. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(4): 21-32.
[1] 汪碧飞, 李月伟, 孔剑, 等. 卡洛特水电站埋藏式压力钢管联合受力研究[J]. 人民长江, 2022, 53(2): 138-142. WANG Bifei, LI Yuewei, KONG Jian, et al. Study on interaction between embedded penstock and surrounding rock of Karot Hydropower Station[J]. Yangtze River, 2022, 53(2): 138-142. [2] 国家能源局. 水电站压力钢管设计规范: NB/T 35056—2015[S]. 北京: 新华出版社, 2016: 84-89. [3] 中华人民共和国水利部. 水利水电工程压力钢管设计规范: SL/T 281—2020[S]. 北京: 中国水利水电出版社, 2020: 83-87. [4] 侯建国, 李春霞, 安旭文, 等. 水电站地下埋管围岩内压分担率的统计特征研究[J]. 岩石力学与工程学报, 2003, 22(8): 1334-1338. HOU Jianguo, LI Chunxia, AN Xuwen, et al. Research on statistical characteristics of sharing ratio of internal pressure in bedrock for embedded penstocks of hydropower stations[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(8): 1334-1338. [5] 柴建峰, 马传宝, 杨雷, 等. 固结灌浆对抽水蓄能电站围岩分担率的影响[J]. 人民黄河, 2018, 40(2): 98-100. CHAI Jianfeng, MA Chuanbao, YANG Lei, et al. Effects of high-pressure consolidation grouting on sharing ratio of internal pressure in bedrock at pumped storage power station[J]. Yellow River, 2018, 40(2): 98-100. [6] 茹松楠, 李作舟, 杨继红, 等. 输水压力管道钢衬-混凝土-围岩联合承载体分担率研究[J]. 华北水利水电大学学报(自然科学版), 2021, 42(6): 14-21. RU Songnan, LI Zuozhou, YANG Jihong, et al. Study on the load contributory proportion of combined structure of steel liner-concrete-surrounding rock joint bearing carrier for water pressure pipe[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2021, 42(6): 14-21. [7] 王伟, 马龙彪, 马信武, 等. 抽水蓄能电站压力钢管与围岩缝隙对压力钢管受力及围岩分担率的影响分析[J]. 水电与抽水蓄能, 2020, 6(3): 91-94. WANG Wei, MA Longbiao, MA Xinwu, et al. Analysis of the influence of the gap between penstock and surrounding rock on the stress of the penstock and the sharing ratio of internal pressure in bedrock of pumped storage power station[J]. Hydropower and Pumped Storage, 2020, 6(3): 91-94. [8] 柴建峰, 马传宝, 杨雷, 等. 抽水蓄能发电工程引水系统下平段钢衬受力敏感性分析[J]. 水力发电, 2017, 43(6): 56-61. CHAI Jianfeng, MA Chuanbao, YANG Lei, et al. Sensitivity analysis of steel lining stress in the lower horizontal penstock section of pumped-storage power station[J]. Water Power, 2017, 43(6): 56-61. [9] 苏凯, 杨子娟, 伍鹤皋, 等. 缝隙对钢衬钢筋混凝土管道结构承载特性的影响研究[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(9): 967-976. SU Kai, YANG Zijuan, WU Hegao, et al. Influence of gap on bearing mechanism of steel-lined reinforced concrete penstock[J]. Journal of Tianjin University(Science and Technology), 2018, 51(9): 967-976. [10] 杨光华, 李志云, 徐传堡, 等. 盾构隧洞复合衬砌的荷载结构共同作用模型[J]. 水力发电学报, 2018, 37(10): 20-30. YANG Guanghua, LI Zhiyun, XU Chuanbao, et al. Modeling load-structure interaction in shield tunnel composite lining[J]. Journal of Hydroelectric Engineering, 2018, 37(10): 20-30. [11] 苏凯, 张伟, 伍鹤皋, 等. 考虑摩擦接触特性的钢衬钢筋混凝土管道承载机理研究[J]. 水利学报, 2016, 47(8): 1070-1078. SU Kai, ZHANG Wei, WU Hegao, et al. Bearing mechanism of reinforced concrete penstock with steel liner considering friction-contact behavior[J]. Journal of Hydraulic Engineering, 2016, 47(8): 1070-1078. [12] 苏凯, 伍鹤皋, 周创兵. 内水压力下水工隧洞衬砌与围岩承载特性研究[J]. 岩土力学, 2010, 31(8): 2407-2412. SU Kai, WU Hegao, ZHOU Chuangbing. Study of combined bearing characteristics of lining and surrounding rock for hydraulic tunnel under internal water pressure[J]. Rock and Soil Mechanics, 2010, 31(8): 2407-2412. [13] 胡蕾, 伍鹤皋, 苏凯. 全埋式钢衬钢筋混凝土管道与坝内垫层管比较分析[J]. 武汉大学学报(工学版), 2012, 45(1): 54-58. HU Lei, WU Hegao, SU Kai. Comparative analysis of steel lined reinforced concrete penstock all embedded in dam and dam-embedded steel penstock encircled by cushion layer[J]. Engineering Journal of Wuhan University, 2012, 45(1): 54-58. [14] 汪碧飞, 李勇泉, 陈美娟, 等. 埋藏式钢管与围岩联合承载研究[J]. 水电能源科学, 2021, 39(1): 115-118. WANG Bifei, LI Yongquan, CHEN Meijuan, et al. Study on interaction between embedded penstock and surrounding rock[J]. Water Resources and Power, 2021,39(1): 115-118. [15] 张传健, 王博士, 张存慧, 等. 铺设排水板的水工隧洞组合衬砌受力特性研究[J]. 人民长江, 2024, 55(10): 182-189. ZHANG Chuanjian, WANG Boshi, ZHANG Cunhui, et al. Mechanical characteristics of combined lining structure of hydraulic tunnels with drainage board[J]. Yangtze River, 2024, 55(10): 182-189. [16] 王汉辉, 王博士, 张存慧, 等. 水工隧洞组合衬砌结构开裂特性研究[J]. 人民长江, 2024, 55(10): 173-181. WANG Hanhui, WANG Boshi, ZHANG Cunhui, et al. Cracking characteristics of combined lining structure of hydraulic tunnels[J]. Yangtze River, 2024, 55(10): 173-181. [17] 吕爱钟, 张路青. 地下隧洞力学分析的复变函数方法[M]. 北京: 科学出版社, 2007: 1-2. [18] LIU Y J, HUANG B S, YUAN M D, et al. A simple method for mechanical analysis of pressurized functionally graded material thick-walled cylinder[J]. Mathematics and Mechanics of Solids, 2024, 29(10): 2036-2047. [19] 苏凯, 陈梦然, 程宵, 等. 基于有条件联合承载机理的导流隧洞衬砌安全与加固措施研究[J]. 水利水电技术, 2013, 44(9): 57-60. SU Kai, CHEN Mengran, CHENG Xiao, et al. Study on lining safety and strengthening measures for diversion tunnel based on conditional combined load-bearing mechanism[J]. Water Resources and Hydropower Engineering, 2013, 44(9): 57-60. [20] LU A Z, ZHANG L Q, ZHANG N. Analytic stress solutions for a circular pressure tunnel at pressure and great depth including support delay[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 514-519.