Abstract: There are many problems during shield/TBM construction, such as the difficulty of muck removal, tool wear, shield tail failure, ground settlement, which seriously affected the safety and efficiency of tunnel construction and become important issues for shield construction at present. The key to solve these problems is to carry out the research on shield/TBM soil conditioning and tail sealing technology. This study described the causes of the above problems. Based on the common construction technology of shield tunnel, this study focused on the current research status of soil conditioning and shield tail sealing technology at home and abroad, and summarized the shortcomings of current common construction methods and construction technology. Relying on the combination of laboratory test and field test, new shield materials and supporting construction technologies were developed, such as high-efficiency soil conditioning agent, anti-dust and wear-resistant agent, high-performance shield tail sealing grease, synchronous grouting filling agent. The theoretical analysis and effect comparison test were carried out to solve the technical problems related to the shield/TBM tunneling process, ensuring the safe and rapid construction of the tunnel, and providing the theoretical basis and technical support for soil conditioning and shield tail sealing in the complex environment with high water pressure in the future.
李树忱,万泽恩,商金华,赵世森,杨晓东,李阳. 盾构/TBM渣土改良与盾尾密封技术研究进展[J]. 隧道与地下工程灾害防治, 2019, 1(4): 33-48.
LI Shuchen, WAN Zeen, SHANG Jinhua, ZHAO Shisen, YANG Xiaodong, LI Yang. Research progress of shield/TBM soil conditioning and tail sealing technology. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 33-48.
李志军,翟志国,赵康林.泥水盾构刀盘结泥饼形成原因及防治技术[J].地下空间与工程学报,2014,10(增刊 2): 1866-1871. LI Zhijun, ZHAI Zhiguo, ZHAO Kanglin. Causes of mud cake formation and prevention technology of mud water shield cutter[J]. Journal of Underground Space and Engineering, 2014, 10(Suppl. 2): 1866-1871.
[3]
PEILA D. Soil conditioning for EPB shield tunnelling[J]. KSCE Journal of Civil Engineering, 2014, 18(3):831-836.
[4]
MAIDL B, HERRENKNECHT M, ANHEUSER L, et al. Mechanised shield tunneling[M]. Berlin, Germany:Ernst & Sohn, 2012.
[5]
WILLIAMSON G E, TRAYLOR M T, HIGUCHI M. Soil conditioning for EPB shield tunnelling on the South Bay Ocean Outfall[C] //Proceedings of RETC Rapid Excavation and Tunnelling Conference. Colorado,USA:Soc Min Engineers Aime, 1999: 897-925.
[6]
MILLIGAN G W E. Lubrication and soil conditioning in tunneling pipe jacking and micro-tunnelling: a state-of-the-art-review[R]. London: Geotechnical Consulting Group, 2000:2-4.
[7]
LEINALA T, GRABINSKY M, KLEIN K. A review of soil conditioning agents for EPBM tunneling[C] //Proceedings of 17th Tunnelling Association of Canada Conference. Toronto, Canada: [s.n.] , 2002.
[8]
ROSS S. Foaming volume and foam stability[J]. The Journal of Physical Chemistry, 1946, 50(5): 391-401.
[9]
ROSS S, SUZIN Y. Measurement of dynamic foam stability[J]. Langmuir, 1985, 1(1): 145-149.
[10]
陈洋, 张行荣, 尚衍波, 等. 起泡剂性能测试方法及影响泡沫稳定性的因素[J]. 中国矿业, 2014, 23(增刊2): 230-234. CHEN Yang, ZHANG Xingrong, SHANG Yanbo, et al. Measurement techniques of foam performance and influence factors of foam stability[J]. China Mining Magazine, 2014, 23(Suppl. 2): 230-234.
[11]
汪辉武. 全风化花岗岩土压平衡盾构泡沫渣土改良技术试验研究[D]. 成都: 西南交通大学, 2018. WANG Huiwu. Study on foam soil conditioning technology for epb in fully weathered granite[D]. Chengdu: Southwest Jiaotong University, 2018.
[12]
BUDACH C, THEWES M. Application ranges of EPB shields in coarse ground based on laboratory research[J]. Tunnelling and Underground Space Technology, 2015, 50:296-304.
[13]
ZUMSTEG R, PUZRIN A M. Stickiness and adhesion of conditioned clay pastes[J]. Tunnelling and Underground Space Technology, 2012, 31: 86-96.
[14]
BORIO L, PEILA D. Study of the permeability of foam conditioned soils with laboratory tests[J]. American Journal of Environmental Sciences, 2010, 6(4): 365-370.
[15]
KAM S I, ROSSEN W R. The compressibility of foamy sands[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202(1): 63-70.
[16]
许恺, 季昌, 周顺华. 砂性土层盾构掘进面前土体改良现场试验[J]. 土木工程学报, 2012, 45(9): 147-155. XU Kai, JI Chang, ZHOU Shunhua. Soil conditioning field test before heading face of EPB shield in sandy soil[J]. China Civil Engineering Journal, 2012, 45(9):147-155.
[17]
KIM T, KIM B, LEE K, et al. Soil conditioning of weathered granite soil used for EPB shield TBM: a laboratory scale study[J]. KSCE Journal of Civil Engineering, 2019, 23(4):1829-1838.
[18]
郭红梅. 长春地区白垩系泥岩地层地铁施工中地质风险及技术措施研究[J]. 岩土工程技术, 2018, 32(1): 21-27. GUO Hongmei. Geological risk and technical measures research on cretaceous mudstone strata during subway construction of Changchun district[J]. Geotechnical Engineering Technique, 2018, 32(1): 21-27.
[19]
LANGMAACK L. Advanced technology of soil conditioning in EPB shield tunnelling[C] //Proceedings of North American tunneling. Rotterdam, Netherlands:A Balkema Publishers, 2000: 525-542.
[20]
LIU P F, WANG S Y, GE L, et al. Changes of Atterberg limits and electrochemical behaviors of clays with dispersants as conditioning agents for EPB shield tunnelling[J]. Tunnelling and Underground Space Technology, 2018, 73: 244-251.
[21]
刘朋飞, 王树英, 阳军生, 等. 渣土改良剂对黏土液塑限影响及机理分析[J]. 哈尔滨工业大学学报, 2018, 50(6): 91-96. LIU Pengfei, WANG Shuying, YANG Junsheng, et al. Effect of soil conditioner on Atterberg limits of clays and its mechanism[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 91-96.
[22]
MILLIGAN, G W E. Soil conditioning and lubricating agents in tunnelling and pipe jacking[C] //Proceedings of Underground Construction. London, UK: [s.n.] , 2001: 105-116.
[23]
MOSS N. Theory of flocculation[J]. Mine and Quarry Journal, 1978, 7(5): 57-61.
[24]
MOODY G. The use of polyacrylamides in mineral processing[J]. Minerals Engineering, 1992, 5(3/4/5):479-492.
[25]
LYON J. Drilling fluids[J]. No-dig International, 1999, 10(2):20-25.
[26]
张文萃. 土压平衡式盾构穿越含砂土层渣土改良试验研究[D]. 西安: 西安建筑科技大学, 2013. ZHANG Wencui. Study on ground conditioning in EPB shield tunneling through sandy stratum[D]. Xi'an: Xi'an University of Architecture and Technology, 2013.
[27]
曾锋. 复合地层盾构下穿建筑物渣土改良与滚刀寿命预测研究[D]. 绵阳: 西南科技大学, 2017. ZENG Feng. Research on soil improvement and cutter life prediction for shield beneath the buildings in complex strata[D]. Mianyang: Southwest University of Science and Technology, 2017.
[28]
张占杰, 刘朴, 赵海峰, 等. TBM滚刀刀圈材料性能的研究[J]. 钢铁研究, 2013, 41(1): 18-21. ZHANG Zhanjie, LIU Pu, ZHAO Haifeng, et al. Research on material performance of TBM disk cutter rings[J]. Research on Iron and Steel, 2013, 41(1): 18-21.
[29]
魏忠良. 硬岩掘进机刀具消耗分析[J]. 隧道建设, 2004, 24(1): 52-55. WEI Zhongliang. Analysis of cutter consumption of Hard Rock Roadheader[J]. Tunnel Construction, 2004, 24(1): 52-55.
[30]
ALBER M. Stress dependency of the Cerchar abrasivity index(CAI)and its effects on wear of selected rock cutting tools[J]. Tunnelling and Underground Space Technology, 2008, 23(4):351-359.
[31]
SUN Z C, ZHAO H L, HONG K R, et al. A practical TBM cutter wear prediction model for disc cutter life and rock wear ability[J]. Tunnelling and Underground Space Technology, 2019, 85: 92-99.
[32]
JAKOBSEN P D, LOHNE J. Challenges of methods and approaches for estimating soil abrasivity in soft ground TBM tunnelling[J]. Wear, 2013, 308(1/2):166-173.
[33]
FARROKH E, KIM D Y. A discussion on hard rock TBM cutter wear and cutterhead intervention interval length evaluation[J]. Tunnelling and Underground Space Technology, 2018, 81: 336-357.
[34]
CHO J W, JEON S, JEONG H Y, et al. Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement[J]. Tunnelling and Underground Space Technology, 2013, 35(4):37-54.
[35]
龚秋明, 佘祺锐, 侯哲生,等. 高地应力作用下大理岩岩体的TBM掘进试验研究[J]. 岩石力学与工程学报, 2010, 29(12):2522-2532. GONG Qiuming, SHE Qirui, HOU Zhesheng, et al. TBM driving test of marble under high ground stress [J]. Journal of Rock Mechanics and Engineering, 2010, 29(12): 2522-2532.
[36]
廖少明, 余炎, 程致高. 盾尾密封对盾构周边渗流场及正面稳定的影响[J]. 同济大学学报(自然科学版), 2008, 36(2): 172-177. LIAO Shaoming, YU Yan, CHENG Zhigao. Effect of shield sealing on stability of workface and seepage field around shield[J]. Journal of Tongji University(Natural Science), 2008, 36(2): 172-177.
[37]
余良滨. 某大直径盾构盾尾同步注浆引起的渗流场变化及地层变形研究[D]. 广州: 华南理工大学, 2018. YU Liangbin. Study on the seepage field variation and soil deformation caused by synchronous grouting of large diameter shield machine during the construction of a tunnel[D]. Guangzhou: South China University of Technology, 2018.
[38]
李建方. 地铁盾构施工穿越江河溶洞安全风险控制探讨[J].建筑安全,2018,33(2):30-34. LI Jianfang. Discussion on safety risk control of metro shield construction Crossing River Cave[J]. Construction Safety, 2018, 33(2): 30-34.
[39]
李胜新, 刘广仁, 张平. 盾构法隧道掘进中盾尾密封涌水涌砂防治技术[J]. 石油工程建设, 2009, 35(2): 79-80. LI Shengxin, LIU Guangren, ZHANG Ping. Prevention and control of water and sand gushing at shield tail seal during shield tunneling[J]. Petroleum Engineering Construction, 2009, 35(2): 79-80.
[40]
谢遵泉. 盾构下穿南沙河风险原因分析及应对措施[J]. 建筑机械,2018, 507(5):65-67. XIE Zunquan. Risk analysis and countermeasures of shield tunneling under Nansha River[J]. Construction Machinery, 2018, 507(5): 65-67.
[41]
秦素娟. 高水压地层下盾尾密封的破坏及保护分析[J].铁道建筑技术,2014(增刊1):164-166. QIN Sujuan. Failure and protection analysis of shield tail seal under high water pressure formation[J]. Railway Construction Technology, 2014(Suppl.1): 164-166.
[42]
张迪. 水底大型泥水盾构盾尾密封失效的应对技术[J].铁道建筑技术,2011(5):1-6. ZHANG Di. Coping technology for failure of shield tail seal of large underwater slurry shield[J]. Railway Construction Technology, 2011(5): 1-6.
[43]
潘国庆. 隧道施工中盾构盾尾密封渗漏风险源分析[J]. 中国市政工程, 2008(5): 59-60. PAN Guoqing. Analysis of risk sources in seal leakage at shield tail during tunneling[J]. China Municipal Engineering, 2008(5): 59-60.
[44]
李勇成,张志鹏. 强透水地层下更换盾尾密封刷技术[J]. 探矿工程(岩土钻掘工程),2008(4):80-81. LI Yongcheng, ZHANG Zhipeng. Technology of replacing shield tail seal brush under strong permeable ground[J]. Exploration Engineering(Geotechnical Drilling and Excavation Engineering), 2008(4): 80-81.
[45]
王先会, 畅海潮, 刘坤, 等. 盾尾密封脂现状与发展方向[J]. 工程机械, 2018, 49(11): 55-61. WANG Xianhui, CHANG Haichao, LIU Kun, et al. Present state and development tendency of shield-end seal grease[J]. Construction Machinery and Equipment, 2018, 49(11): 55-61.
[46]
朱祖熹. 盾构法隧道的盾尾防水密封与盾尾密封油脂[J].中国建筑防水,2009(7):2-6. ZHU Zuxi. Shield tail waterproof seal and shield tail sealing grease of shield tunnel[J]. China Building Waterproof, 2009(7): 2-6.
[47]
王德乾,宋世雄,程晋国,等. 盾尾密封油脂泵送性测试仪器、测试方法与评价标准研究[J].隧道建设,2017,37(3):303-306. WANG Deqian, SONG Shixiong, CHENG Jinguo, et al. Research on pumping test instrument, test method and evaluation standard of Dunwei sealing grease[J]. Tunnel Construction, 2017, 37(3):303-306.
[48]
王德乾,宋世雄. 温度对某进口盾尾密封油脂泵送性与锥入度的影响探究[J].工业技术创新,2017,4(1):44-46. WANG Deqian, SONG Shixiong. Study on the influence of temperature on the pumping performance and cone penetration of an imported shield tail sealing grease[J]. Industrial Technology Innovation, 2017, 4(1): 44-46.
[49]
王德乾. 盾构用盾尾密封油脂抗水压密封研究[J]. 铁道建筑技术, 2017(1): 7-9,29. WANG Deqian. Study of water-tightness under high pressure of shield tail sealing grease[J]. Railway Construction Technology, 2017(1): 7-9,29.
[50]
王德乾,张锋,贺春龙,等. 安达环保型盾尾密封油脂的研究与应用[J].铁道建筑技术,2015(2):86-90. WANG Deqian, ZHANG Feng, HE Chunlong, et al. Research and application of Anda environmental shield tail sealing grease[J]. Railway Construction Technology, 2015(2): 86-90.
[51]
王德乾. 关于盾尾密封油脂抗水压密封性和泵送性测试的探讨[J].隧道建设,2014,34(2):107-110. WANG Deqian. Discussion on the test of water pressure sealing resistance and pumping performance of shield tail sealing grease[J]. Tunnel Construction, 2014, 34(2): 107-110.
[52]
王德乾. 一种盾尾密封油脂的配方研究与性能表征[J].隧道建设,2013,33(4):277-280. WANG Deqian. Formula research and performance characterization of a shield tail sealing grease[J]. Tunnel Construction, 2013, 33(4):277-280.
[53]
KOMIYA K, SOGA K, AKAGI H, et al. Soil consolidation associated with grouting during shield tunnelling in soft clayey ground[J]. Géotechnique, 2001, 51(10): 835-846.
[54]
YOUN B Y, BREITENBÜCHER R. Influencing parameters of the grout mix on the properties of annular gap grouts in mechanized tunneling[J]. Tunnelling and Underground Space Technology, 2014, 43: 290-299.
[55]
THESES M, BUDACH C. Grouting of the annular gap in shield tunneling-an important factor for minimization of settlements and production performance[C] // ITA-AITES World Tunnel Congress, [S.l.] : [s.n.] , 2009.
[56]
张云. 土质隧首土压力和地层位移的离心模型试验及数值模拟研究[D]. 南京:河海大学, 2000. ZHANG Yun. Centrifugal model test and numerical simulation of earth pressure and ground displacement at the head of soil tunnel[D]. Nanjing: Hehai University, 2000.