Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (4): 13-32    
  本期目录 | 过刊浏览 | 高级检索 |
岩土介质小孔收缩理论及其在隧道工程中的应用
余海岁, 庄培芝*
英国利兹大学土木工程学院, 英国 利兹 LS2 9JT
Cavity contraction theory and its application to tunnelling
YU Haisui, ZHUANG Peizhi*
School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
下载:  PDF (9470KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 隧道掘进和地下开挖涉及岩土体从其原位状态卸载的问题,该过程可以通过从原位应力状态的小孔收缩分析来模拟。经过几十年的发展,岩土介质中小孔收缩理论已成功应用于预测隧道收敛变形、计算隧道开挖引起的地层沉降和设计隧道支护体系等工程问题,以达到控制变形和维护隧道稳定的目的。结合上述工程应用,对相关小孔收缩理论的研究现状进行了较为系统的回顾总结。且采用Mohr-Coulomb屈服准则和非相关联流动法则,给出了有限介质中柱/球形小孔从原位应力状态收缩的大应变解析解。以此为例,详细说明了一维小孔收缩弹塑性解析分析的方法。本研究内容可为小孔收缩理论的进一步发展及其在隧道工程应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余海岁
庄培芝
关键词:  小孔收缩理论  隧道  变形  稳定性  解析方法    
Abstract: Tunnelling and underground excavations involve the removal of soil or rock mass from their initial locations. This process may be accurately modelled by the unloading of a cavity from the in-situ stress state. In the past decades, for the purpose of controlling ground deformation and maintaining tunnel stability, cavity contraction theory had been used to predict ground reaction curves, to estimate ground settlements due to tunnelling and to design tunnel support systems. This paper presented a comprehensive review of analytical cavity contraction solutions for these typical applications. For illustration, a new finite strain analytical solution was derived for the unloading analysis of a cylindrical spherical cavity in non-associated Mohr Coulomb materials with a finite radial extent. This paper would be beneficial for the future development of cavity contraction theory and its application to practical tunnelling problems.
Key words:  cavity contraction theory    tunnelling    deformation    stability    analytical method
收稿日期:  2019-11-12                出版日期:  2019-12-20      发布日期:  2020-03-09      期的出版日期:  2019-12-20
中图分类号:  TU94  
通讯作者:  庄培芝(1988— ),男,山东青岛人,博士后,主要研究方向为岩土力学及岩土工程. E-mail:p.zhuang@leeds.ac.uk   
作者简介:  余海岁. E-mail:h.yu@leeds.ac.uk
引用本文:    
余海岁, 庄培芝. 岩土介质小孔收缩理论及其在隧道工程中的应用[J]. 隧道与地下工程灾害防治, 2019, 1(4): 13-32.
YU Haisui, ZHUANG Peizhi. Cavity contraction theory and its application to tunnelling. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 13-32.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I4/13
[1] 洪开荣. 我国隧道及地下工程近两年的发展与展望[J]. 隧道建设, 2017, 37(2): 123-134. HONG Kairong. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnel Construction, 2017, 37(2): 123-134.
[2] MAIR R J. Tunnelling and geotechnics: new horizons[J]. Géotechnique, 2008, 58(9): 695-736.
[3] 田四明, 赵勇, 石少帅,等. 中国铁路隧道建设期典型灾害防控方法现状、问题与对策[J]. 隧道与地下工程灾害防治, 2019(2): 24-48. TIAN Siming, ZHAO Yong, SHI Shaoshuai, et al. The status, problems and countermeasures of typical disaster prevention and control methods during the construction period of Chinese railway tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019(2): 24-48.
[4] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012,31(10): 1945-1956. QIAN Qihu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956.
[5] 王梦恕, 张成平. 城市地下工程建设的事故分析及控制对策[J]. 建筑科学与工程学报,2008,25(2): 1-6. WANG Mengshu, ZHANG Chengping. Analysis of accident induced by urban underground project construction and its control measures[J]. Journal of Architecture and Civil Engineering, 2008, 25(2): 1-6.
[6] 郑颖人, 朱合华, 方正昌, 等. 地下工程围岩稳定分析与设计理论[M].北京: 人民交通出版社,2012.
[7] GONZÁLEZ C, SAGASETA C. Patterns of soil deformations around tunnels. application to the extension of Madrid metro[J]. Computers and Geotechnics, 2001, 28(6/7): 445-468.
[8] VERRUIJT A. A complex variable solution for a deforming circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2): 77-89.
[9] VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753-756.
[10] 陈子萌. 围岩力学分析中的解析方法[M]. 北京: 煤炭工业出版社; 1994.
[11] MAIR R J, TAYLOR R N. In prediction of clay behaviour around tunnels using plasticity solutions[C] //In Predictive Soil Mechanics: Proceedings of the Wroth Memorial Symposium. Oxford, UK:Thomas Telford, 1993: 449-463.
[12] SAGASETA C. Analysis of undraind soil deformation due to ground loss[J].Géotechnique, 1987, 37(3): 301-320.
[13] TERZAGHI K, RICHART F E Jr. Stresses in rock about cavities[J]. Géotechnique, 1952, 3(2): 57-90.
[14] BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J].Journal of Geotechnical Engineering, 1983, 109(1): 15-39.
[15] YU H S. Cavity expansion methods in geomechanics[M].Dordrecht, Netherlands: Springer Netherlands, 2000.
[16] LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.
[17] PINTO F, WHITTLE A J. Ground movements due to shallow tunnels in soft ground. I: analytical solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 04013040.
[18] MARSHALL A M. Tunnel-pile interaction analysis using cavity expansion methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(10): 1237-1246.
[19] OGAWA T, LO K Y. Effects of dilatancy and yield criteria on displacements around tunnels[J].Canadian Geotechnical Journal, 1987, 24(1): 100-113.
[20] CARRANZA-TORRES C, FAIRHURST C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the hoek-brown failure criterion[J].Tunnelling and Underground Space Technology, 2000, 15(2): 187-213.
[21] BRADY B H, BROWN E T. Rock mechanics for underground mining [M].3rd Ed. London, UK: Kluwer Academic Publishers, 2004.
[22] PANET M. Calcul des tunnels par la Me'thode de convergence—confinement[M].Paris, France: Presses de l’Ecole Nationale des Ponts et Chausse'es, 1995.
[23] FENNER R. Untersuchungen zur erkenntnis des gebirgsdrucks[J]. Glückauf, 1938(74): 681-695, 705-715.
[24] 张治国, 师敏之, 张成平, 等. 类矩形盾构隧道开挖引起邻近地下管线变形研究[J]. 岩石力学与工程学报, 2019, 38(4): 852-864. ZHANG Zhiguo, SHI Minzhi, ZHANG Chengping, et al. Research on deformation of adjacent underground pipelines caused by excavation of quasi-rectangular shields[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 852-864.
[25] 余海岁. 岩土介质小孔扩张理论[M].周国庆,赵光思,梁恒昌,等, 译. 北京: 科学出版社,2013.
[26] WANG H N, UTILI S, JIANG M J. An analytical approach for the sequential excavation of axisymmetric lined tunnels in viscoelastic rock[J].International Journal of Rock Mechanics and Mining Sciences,2014, 68: 85-106.
[27] SAVIN G N. Stress distribution around holes[M].Washington, D.C., USA: National Aeronautics and Space Administration, 1970.
[28] MUSKHELISHVILI N I. Some basic problems of the mathematical theory of elasticity[M].Dordrecht, Netherlands:Springer Netherlands, 1977.
[29] LEE K M, ROWE R K, LO K Y. Subsidence owing to tunnelling I: estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940.
[30] VLACHOPOULOS N, DIEDERICHS M S. Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 131-146.
[31] VLACHOPOULOS N, DIEDERICHS M S. Appropriate uses and practical limitations of 2D numerical analysis of tunnels and tunnel support response[J]. Geotechnical and Geological Engineering, 2014, 32(2): 469-488.
[32] HUANG M S, LI S, YU J, et al. Continuous field based upper bound analysis for three-dimensional tunnel face stability in undrained clay[J]. Computers and Geotechnics, 2018, 94: 207-213.
[33] SLOAN S W, ASSADI A. Undrained stability of a square tunnel in a soil whose strength increases linearly with depth[J]. Computers and Geotechnics, 1991, 12(4): 321-346.
[34] GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, MENÉNDEZ-DÍAZ A, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J].Tunnelling and Underground Space Technology, 2008, 23(1): 25-37.
[35] ROWE R K, LO K Y, KACK G J. A method of estimating surface settlement above tunnels constructed in soft ground[J]. Canadian Geotechnical Journal, 1983, 20(1): 11-22.
[36] KARAKUS M. Appraising the methods accounting for 3D tunnelling effects in 2D plane strain FE analysis[J].Tunnelling and Underground Space Technology, 2007, 22(1): 47-56.
[37] DO N A, DIAS D. A comparison of 2D and 3D numerical simulations of tunnelling in soft soils[J]. Environmental Earth Sciences, 2017, 76(3): 102.
[38] AFTES. Analysis of tunnel stability by the convergence-confinement method[J].Underground Space. 1978, 4(4): 221-223.
[39] ROWE R K, KACK G J. A theoretical examination of the settlements induced by tunnelling: four case histories[J]. Canadian Geotechnical Journal, 1983, 20(2): 299-314.
[40] 阿比尔的, 郑颖人, 冯夏庭, 等. 隧道特征线法的修正与发展[J].岩石力学与工程学报, 2015, 34(增刊1): 3067-3073. ABI Erdi, ZHENG Yingren, FENG Xiating, et al. Modification and development of characteristic line method of tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl.1): 3067-3073.
[41] ALEJANO L R, RODRÍGUEZ-DONO A, VEIGA M. Plastic radii and longitudinal deformation profiles of tunnels excavated in strain-softening rock masses[J]. Tunnelling and Underground Space Technology, 2012, 30: 169-182.
[42] 崔岚, 郑俊杰, 苗晨曦, 等. 隧道纵向变形曲线与围岩特征曲线耦合分析[J].岩土工程学报, 2014, 36(4): 707-715. CUI Lan, ZHENG Junjie, MIAO Chenxi, et al. Coupling analysis of longitudinal deformation profile and ground reaction curve[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 707-715.
[43] FRANZA A, MARSHALL A M. Empirical and semi-analytical methods for evaluating tunnelling-induced ground movements in sands[J].Tunnelling and Underground Space Technology, 2019, 88: 47-62.
[44] PANET M, GUENOT A. In Analysis of convergence behind the face of a tunnel[C] //Proceedings of Tunnelling82. London, UK:Pergamon Press, 1983:197-204.
[45] CORBETTA F, BERNAUD D, NGUYEN Minh D. Contribution à la méthode convergence-confinement par le principe de la similitude[J].Revue Française De Géotechnique, 1991(54): 5-11.
[46] UNLU T, GERCEK H. Effect of poisson's ratio on the normalized radial displacements occurring around the face of a circular tunnel[J]. Tunnelling and Underground Space Technology, 2003, 18(5): 547-553.
[47] 张常光, 赵均海, 张庆贺. 基于统一强度理论的深埋圆形岩石隧道收敛限制分析[J].岩土工程学报, 2012, 34(1): 110-114. ZHANG Changguang, ZHAO Junhai, ZHANG Qinghe. Convergence-confinement analysis of deep circular rock tunnels based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 110-114.
[48] FANG Y, CHEN Z, TAO L, et al. Model tests on longitudinal surface settlement caused by shield tunnelling in sandy soil[J]. Sustainable Cities and Society, 2019, 47: 101504.
[49] FARGNOLI V, BOLDINI D, AMOROSI A. TBM tunnelling-induced settlements in coarse-grained soils: the case of the new Milan underground line 5[J]. Tunnelling and Underground Space Technology, 2013, 38: 336-347.
[50] MOUSIVAND M, MALEKI M, NEKOOEI M, et al. Application of convergence-confinement method in analysis of shallow non-circular tunnels[J].Geotechnical and Geological Engineering, 2017, 35(3): 1185-1198.
[51] SONG S G, LI S C, LI L P, et al. Study on longitudinal deformation profile of rock mass in a subsea tunnel[J]. Marine Georesources & Geotechnology, 2016, 34(4): 376-383.
[52] LUO Y B, CHEN J X, CHEN Y, et al. Longitudinal deformation profile of a tunnel in weak rock mass by using the back analysis method[J].Tunnelling and Underground Space Technology, 2018, 71: 478-493.
[53] VRAKAS A, ANAGNOSTOU G. A finite strain closed-form solution for the elastoplastic ground response curve in tunnelling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(11): 1131-1148.
[54] PARK K, KIM Y. Analytical solution for a circular opening in an elastic-brittle-plastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 616-622.
[55] YU H S, ROWE R K. Plasticity solutions for soil behaviour around contracting cavities and tunnels[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1245-1279.
[56] YU H S, ZHUANG P Z, MO P Q. A unified critical state model for geomaterials with an application to tunnelling[J].Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(3): 464-480.
[57] CARRANZA-TORRES C, FAIRHURST C. The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6): 777-809.
[58] DETOURNAY E. Elastoplastic model of a deep tunnel for a rock with variable dilatancy[J].Rock Mechanics and Rock Engineering, 1986, 19(2): 99-108.
[59] SHARAN S K. Exact and approximate solutions for displacements around circular openings in elastic-brittle-plastic Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(4): 542-549.
[60] MO P Q, YU H S. Undrained cavity-contraction analysis for prediction of soil behavior around tunnels[J].International Journal of Geomechanics, 2017, 17(5): 04016121.
[61] ALONSO E, ALEJANO L R, VARAS F, et al. Ground response curves for rock masses exhibiting strain-softening behaviour[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(13): 1153-1185.
[62] CHEN S L, ABOUSLEIMAN Y N, MURALEETHARAN K K.Closed-form elastoplastic solution for the wellbore problem in strain hardening/softening rock formations[J]. International Journal of Geomechanics, 2012, 12(4): 494-507.
[63] 范鹏贤, 王明洋, 李文培. 岩土介质中圆形隧洞围岩压力理论分析进展[J].现代隧道技术,2010,47(2): 1-7,23. FAN Pengxian WANG Mingyang, LI Wenpei. Progress in theoretical analysis of ground response to circular excavations in rock & soil medium[J]. Modern Tunnelling Technology, 2010, 47(2): 1-7, 23.
[64] VRAKAS A, ANAGNOSTOU G. A simple equation for obtaining finite strain solutions from small strain analyses of tunnels with very large convergences[J]. Géotechnique, 2015, 65(11): 936-944.
[65] SHARAN S K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(1): 78-85.
[66] MASSINAS S A, SAKELLARIOU M G. Closed-form solution for plastic zone formation around a circular tunnel in half-space obeying Mohr-Coulomb criterion[J].Géotechnique, 2009, 59(8): 691-701.
[67] OSMAN A S, BOLTON M D, MAIR R J. Predicting 2D ground movements around tunnels in undrained clay[J]. Géotechnique, 2006, 56(9): 597-604.
[68] MAIR R J, GUNN M J, O'REILLY M P. In ground movement around shallow tunnels in soft clay[C] //Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, Sweden:[s.n.] , 1981:323-328.
[69] GRANT R J. Movements around a tunnel in two-layer ground[D].London, UK: City University London, 1998.
[70] FRANZA A, MARSHALL A M, ZHOU B. Greenfield tunnelling in sands: the effects of soil density and relative depth[J]. Géotechnique, 2019, 69(4): 297-307.
[71] ZHUANG P Z, YANG H, YU H S, et al. Plasticity solutions for predictions of undrained stability and ground deformation of shallow tunnels in clay[J].Tunnelling and Underground Space Technology, 2019.
[72] HOEK E, BROWN ET. Underground excavations in rock[M]. London, UK: the Institute of Mining and Metallurgy, 1980.
[73] Us Department of Transportation.Improved design of tunnel supports: volume 1: simplified analysis for ground-structure interaction in tunneling[R].SCHWARTZ C W, EINSTEIN H H.UMTA-MA-06-0100-80-4.[S.l.] :Urban Mass Transportation Administration, 1980.
[74] KIM H J, EISENSTEIN Z. Prediction of tunnel lining loads using correction factors[J].Engineering Geology, 2006, 85(3/4): 302-312.
[75] CAQUOT A, KERISEL J. Traité de mécanique des sols[M].Paris, France:Gauthier-Villars, 1966.
[76] MAIR R J. Centrifugal modelling of tunnel construction in soft clay[D].Cambridge, UK: Cambridge University, 1979.
[77] WU B R, LEE C J. Ground movements and collapse mechanisms induced by tunneling in clayey soil[J]. International Journal of Physical Modelling in Geotechnics, 2003, 3(4): 15-29.
[78] WILSON D W, ABBO A J, SLOAN S W, et al. Undrained stability of a circular tunnel where the shear strength increases linearly with depth[J]. Canadian Geotechnical Journal, 2011, 48(9): 1328-1342.
[79] SLOAN S W, ASSADI A. In stability of shallow tunnels in soft ground[C] //Proceedings of the Wroth Memorial Symposium Thoms Telford: in Predictive Soil Mechanics.Oxford, UK:[s.n.] , 1993.
[80] 郑颖人, 王永甫. 隧道稳定性分析与设计方法讲座之一: 隧道围岩压力理论进展与破坏机制研究[J].隧道建设, 2013, 33(6): 423-430. ZHENG Yingren, WANG Yongfu. Evolution of rock mass pressure theory and researches on tunnel failure mechanism[J]. Tunnel Construction, 2013, 33(6): 423-430.
[81] TIMOSHENKO S P, GOODIER J N. Theory of elasticity[M]. 3rd Ed. London, UK: McGraw-Hill, Inc, 1970.
[82] GALIN L A. Plane elastic-plastic problem: plastic regions around circular holes in plates and beams[J]. Prikladnaia Matematikai Mekhanika, 1946, 10: 365-386.
[83] YARUSHINA V M, DABROWSKI M, PODLADCHIKOV Y Y. An analytical benchmark with combined pressure and shear loading for elastoplastic numerical models[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8):1-16.
[84] DETOURNAY E, ST JOHN C M. Design charts for a deep circular tunnel under non-uniform loading[J]. Rock Mechanics and Rock Engineering, 1988, 21(2): 119-137.
[85] TOKAR G. Generalization of Galin's problem to frictional materials and discontinuous stress fields[J]. International Journal of Solids and Structures, 1990, 26(2): 129-147.
[86] DETOURNAY E. An approximate statical solution of the elastoplastic interface for the problem of Galin with a cohesive-frictional material[J].International Journal of Solids and Structures, 1986, 22(12): 1435-1454.
[87] ZHUANG P Z, YU H S. Two-dimensional elastoplastic analysis of cylindrical cavity problems in Tresca materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(8): 1612-1633.
[88] ZHOU H, KONG G, LIU H, et al. A semi-analytical solution for cylindrical cavity expansion in elastic-perfectly plastic soil under biaxial in situ stress field[J].Géotechnique, 2016, 66(9): 786-788.
[89] KERCHMAN V I, ERLIKHMAN F M. A variational method of solving an elastic-plastic problem for a body with a circular hole[J]. Journal of Applied Mathematics and Mechanics, 1988, 52(1): 105-110.
[90] BRADFORD I D R, DURBAN D. Stress and deformation fields around a cylindrical cavity embedded in a pressure-sensitive elastoplastic medium[J]. Journal of Applied Mechanics, 1998, 65(2): 374-379.
[91] DETOURNAY E, FAIRHURST C. Two-dimensional elastoplastic analysis of a long, cylindrical cavity under non-hydrostatic loading[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(4): 197-211.
[92] ZHUANG P Z, YU H S. A unified analytical solution for elastic-plastic stress analysis of a cylindrical cavity in Mohr-Coulomb materials under biaxial in situ stresses[J].Géotechnique, 2019, 69(4): 369-376.
[93] FU J Y, YANG J S, KLAPPERICH H, et al. Analytical prediction of ground movements due to a nonuniform deforming tunnel[J]. International Journal of Geomechanics, 2016, 16(4): 04015089.
[94] ZHANG Z G, ZHANG M X, JIANG Y J, et al. Analytical prediction for ground movements and liner internal forces induced by shallow tunnels considering non-uniform convergence pattern and ground-liner interaction mechanism[J]. Soils and Foundations, 2017, 57(2): 211-226.
[95] CHOU W I, BOBET A. Predictions of ground deformations in shallow tunnels in clay[J].Tunnelling and Underground Space Technology, 2002, 17(1): 3-19.
[96] PARK K H. Elastic solution for tunneling-induced ground movements in clays[J].International Journal of Geomechanics, 2004, 4(4): 310-318.
[97] STRACK O E, VERRUIJT A. A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(12): 1235-1252.
[98] ZHANG Z G, HUANG M S, XI X G, et al. Complex variable solutions for soil and liner deformation due to tunneling in clays[J]. International Journal of Geomechanics, 2018, 18(7): 04018074.
[99] BOBET A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266.
[100] LITWINISZYN J. In the theories and model research of movements of ground masses[C] // Proceedings of the European Congress on Ground Movement. Leeds, UK:[s.n.] , 1957:209.
[101] 刘宝琛. 随机介质理论及其在开挖引起的地表下沉问题中的应用[J].中国有色金属学报, 1992, 2(3): 8-14.
[102] 刘宝琛, 张家生. 近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报, 1995, 14(4): 289-296.
[103] YANG J S, LIU B C, WANG M C. Modeling of tunneling-induced ground surface movements using stochastic medium theory[J]. Tunnelling and Underground Space Technology, 2004, 19(2): 113-123.
[104] YANG X L, WANG J M. Ground movement prediction for tunnels using simplified procedure[J].Tunnelling and Underground Space Technology, 2011, 26(3): 462-471.
[105] VERRUIJT A, SAGASETA C, STRACK O E. Discussion of “predictions of ground deformations in shallow tunnels in clay”[J]. Tunnelling and Underground Space Technology, 2003, 18(1): 93-94.
[106] WANG H N, UTILI S, JIANG M J, et al. Analytical solutions for tunnels of elliptical cross-section in rheological rock accounting for sequential excavation[J].Rock Mechanics and Rock Engineering, 2015, 48(5): 1997-2029.
[107] PECK R B. In deep excavations and tunneling in soft ground[C] //Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, Mexico:[s.n.] , 1969:311-375.
[108] SCHMIDT B. Settlements and ground movements associated with tunnelling in soil[D].Illinois, USA: University of Illinois at Urbana-Champaign, 1969.
[109] VORSTER T E, KLAR A, SOGA K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410.
[110] ZHANG Q J, WU K, CUI S S, et al. Surface settlement induced by subway tunnel construction based on modified peck formula[J]. Geotechnical and Geological Engineering, 2019, 37(4): 2823-2835.
[111] ATTEWELL P, WOODMAN J P. Predicting the dynamics of ground settlement and its derivatives caused by tunnelling in soil[J].Ground Engineering, 1982, 15(8): 13-22.
[112] NEW B M, BOWERS K H. Ground movement model validation at the heathrow express trial tunnel[C] //Tunnelling’94. Boston, USA:Springer US, 1994:301-329.
[113] REED M B. Stresses and displacements around a cylindrical cavity in soft rock[J].IMA Journal of Applied Mathematics, 1986, 36(3): 223-245.
[114] CHADWICK P. The quasi-static expansion of a spherical cavity in metals and ideal soils[J].The Quarterly Journal of Mechanics and Applied Mathematics, 1959, 12(1): 52-71.
[115] YU H S, HOULSBY G T. Finite cavity expansion in dilatant soils: loading analysis[J].Géotechnique, 1991, 41(2): 173-183.
[1] 左宇军,万入祯,孙文吉斌,刘镐,林健云,娄义黎. 不同开挖工法对含煤系岩层隧道围岩稳定性影响[J]. 隧道与地下工程灾害防治, 2019, 1(4): 64-74.
[2] 付俊生. 隧道围岩变形预测及趋势判断方法[J]. 隧道与地下工程灾害防治, 2019, 1(4): 103-108.
[3] 张一鸣,高之然. 裂面优化法在岩土及隧道工程中的应用研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 49-55.
[4] 郭小红, 姚再峰, 马文著, 和晓楠. 山岭隧道洞口段工程地质灾害风险评价的数学模型及应用[J]. 隧道与地下工程灾害防治, 2019, 1(4): 75-84.
[5] 张治国, 张洋彬, 王志伟, 方蕾, 马少坤, 师敏之, 魏纲. 类矩形截面隧道开挖诱发邻近管线变形模型试验与数值模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 85-96.
[6] 李利平,贺鹏,石少帅,刘洪亮,胡杰,秦承帅. 隧道施工过程巨石垮塌研究现状、问题与对策研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 22-31.
[7] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[8] 高源, 杨天鸿, 辛全明, 刘飞跃. 北山隧道式大跨度地下四季滑雪场围岩稳定性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 109-115.
[9] 谭忠盛. 隧道与地下工程建设理念及关键技术——记王梦恕院士的主要学术思想和科研成就[J]. 隧道与地下工程灾害防治, 2019, 1(2): 1-6.
[10] 鲜国,石少帅,赵勇,肖广智,喻渝,王俊涛,卜林. 强富水隧道下穿河段突涌水灾害综合防控方法研究与应用[J]. 隧道与地下工程灾害防治, 2019, 1(2): 74-82.
[11] 王明年,于丽,李琦,王旭. 高速铁路隧道防灾疏散救援技术研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(2): 13-23.
[12] 田四明,赵勇,石少帅,胡杰. 中国铁路隧道建设期典型灾害防控方法现状、问题与对策[J]. 隧道与地下工程灾害防治, 2019, 1(2): 24-48.
[13] 闫保旭,朱万成,侯晨. 地下采场二步采充填体最大暴露高度理论分析[J]. 隧道与地下工程灾害防治, 2019, 1(2): 100-106.
[14] 王焕. 大直径泥水盾构穿越无加固条件沉降敏感带扰动控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 107-113.
[15] 焦玉勇,张为社,欧光照,邹俊鹏,陈光辉. 深埋隧道钻爆法开挖段突涌水灾害的形成机制及防控研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 36-46.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn