Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (4): 103-108    
  本期目录 | 过刊浏览 | 高级检索 |
隧道围岩变形预测及趋势判断方法
付俊生
中交一航局第三工程有限公司, 辽宁 大连 116083
Deformation prediction and trend judgment method of tunnel surrounding rock
FU Junsheng
No.3 Engineering Co., Ltd., CCCC First Harbor Engineering Co., Ltd., Dalian 116083, Liaoning, China
下载:  PDF (479KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为充分发挥监控量测在隧道施工过程中的作用及价值,将那朗隧道作为工程实例背景,以支持向量机为理论基础,并利用粒子群算法、混沌理论等优化其模型参数,进而构建出混沌优化PSO-SVM模型,以实现隧道变形的准确预测;利用重标极差法判断隧道变形的发展趋势,以佐证前述预测效果的准确性。实例研究表明:通过试算法和粒子群算法能有效优化支持向量机的模型参数,且混沌理论能有效弱化预测结果的残差序列,所得预测结果的相对误差均值均小于2%,验证了本研究预测模型的有效性;同时,重标极差分析得出隧道变形虽会持续增加,但增加速率趋于减小,所得结果与预测结果相符,验证了前者分析结果的准确性。研究发现,为隧道变形预测提供了一种新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付俊生
关键词:  隧道  变形预测  支持向量机  粒子群算法  重标极差分析    
Abstract: In order to give full play to the role and value of monitoring and measurement in the tunnel construction process, the Nalang Tunnel was used as the background of the engineering example.The support vector machine was used as the theoretical basis, and its model parameters were optimized by using particle swarm optimization and chaos theory. A chaos optimized PSO-SVM model was constructed to achieve accurate prediction of tunnel deformation. The re-calibration range method was used to judge the development trend of tunnel deformation to prove the accuracy of the aforementioned prediction effect. The case study showed that the model parameters of the support vector machine could be effectively optimized by the trial algorithm and the particle swarm algorithm, and the chaos theory could effectively weaken the residual sequence of the prediction results. The average relative errors of the prediction results were less than 2%, which validated the research. The validity of the prediction model; at the same time, the re-standard range analysis showed that the tunnel deformation will continue to increase, but the increase rate tended to decrease. The obtained results were consistent with the prediction results, which verified the accuracy of the former analysis results. The study found that it provided a new idea for tunnel deformation prediction and was worth further promotion and application.
Key words:  tunnel    deformation prediction    support vector machine    particle swarm optimization    rescaling range analysis
收稿日期:  2019-11-15                出版日期:  2019-12-20      发布日期:  2020-03-09      期的出版日期:  2019-12-20
中图分类号:  U456  
作者简介:  付俊生(1978— ),男,辽宁大连人,工程师,主要研究方向为公路工程施工. E-mail:1377604277@qq.com
引用本文:    
付俊生. 隧道围岩变形预测及趋势判断方法[J]. 隧道与地下工程灾害防治, 2019, 1(4): 103-108.
FU Junsheng. Deformation prediction and trend judgment method of tunnel surrounding rock. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 103-108.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I4/103
[1] 文明,张顶立,房倩,等.隧道围岩变形的非线性自回归时间序列预测方法研究[J].北京交通大学学报,2017,41(4):1-7. WEN Ming, ZHANG Dingli, FANG Qian, et al. Research on nonlinear auto regressive time series method for predicting deformation of surrounding rock in tunnel[J]. Journal of Beijing Jiaotong University, 2017, 41(4): 1-7.
[2] 周冠南,孙玉永,贾蓬.基于遗传算法的BP神经网络在隧道围岩参数反演和变形预测中的应用[J].现代隧道技术,2018,55(1):107-113. ZHOU Guannan, SUN Yuyong, JIA Peng. Application of genetic algorithm based BP neural network to parameter inversion of surrounding rock and deformation prediction[J]. Modern Tunnelling Technology, 2018, 55(1): 107-113.
[3] 强跃,李绍红,刘超琼.基于多尺度组合核极限学习机模型的隧道围岩变形预测及应用[J].现代隧道技术,2017,54(6):70-76. QIANG Yue, LI Shaohong, LIU Chaoqiong. Deformation prediction for a tunnel rock mass based on the multi-scale combination kernel extreme learning machine model[J]. Modern Tunnelling Technology, 2017, 54(6): 70-76.
[4] 肖大海,谢全敏,杨文东.基于多变量的集成预测模型在隧道拱顶沉降变形预测中的应用[J].公路交通科技,2017,34(12):90-96. XIAO Dahai, XIE Quanmin, YANG Wendong. Application of integrated forecasting model based on multivariable in tunnel vault settlement forecasting[J]. Journal of Highway and Transportation Research and Development, 2017, 34(12): 90-96.
[5] 张云鹏,李利平,贺鹏,等.隧道围岩大变形高斯过程回归预测模型及其工程应用[J].科学技术与工程,2018,18(1):122-127. ZHANG Yunpeng, LI Liping, HE Peng, et al. Gaussian process regression prediction model for the big deformation of the tunnel rock and its application[J]. Science Technology and Engineering, 2018, 18(1): 122-127.
[6] 陈飞飞,杨振兴,马还援,等.基于趋势项分离的隧道变形组合预测研究[J].施工技术,2016,45(19):110-115. CHEN Feifei, YANG Zhenxing, MA Huanyuan, et al. Prediction combination of tunnel deformation based on trend term separation[J]. Construction Technology, 2016, 45(19): 110-115.
[7] 赵艳南,牛瑞卿,彭令,等.基于粗糙集和粒子群优化支持向量机的滑坡变形预测[J].中南大学学报(自然科学版),2015,46(6):2324-2332. ZHAO Yannan, NIU Ruiqing, PENG Ling, et al. Prediction of landslide deformation based on rough sets and particle swarm optimization-support vector machine[J]. Journal of Central South University(Science and Technology), 2015, 46(6): 2324-2332.
[8] 张潇珑.基于自适应粒子群优化的SVM算法在建筑物沉降预测中的应用[J].测绘工程,2015,24(11):44-47. ZHANG Xiaolong. Application of SVM based on adaptive particle swarm optimization algorithm to building settlement prediction[J]. Engineering of Surveying and Mapping, 2015, 24(11): 44-47.
[9] 范思遐,周奇才,熊肖磊,等.基于粒子群与支持向量机的隧道变形预测模型[J].计算机工程与应用,2014,50(5):6-10,15. FAN Sixia, ZHOU Qicai, XIONG Xiaolei, et al. Tunnel deformation prediction model based on support vector machine with particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2014, 50(5): 6-10, 15.
[10] 罗林,左昌群,赵连,等.基于BP神经网络和R/S分析的隧道仰坡沉降变形预报预测[J].施工技术,2014,43(11):80-84. LUO Lin, ZUO Changqun, ZHAO Lian, et al. Settlement deformation prediction of the front slope in tunnel based on the BP neural network and R/S analysis[J]. Construction Technology, 2014, 43(11): 80-84.
[11] 王娟,王兴科.组合预测及R/S分析在基坑变形趋势判断中的应用研究[J].长江科学院院报,2017,34(5):103-108. WANG Juan, WANG Xingke. Application of combinatorial forecasting and R/S analysis to determining foundation pit's deformation trend[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(5): 103-108.
[1] 余海岁, 庄培芝. 岩土介质小孔收缩理论及其在隧道工程中的应用[J]. 隧道与地下工程灾害防治, 2019, 1(4): 13-32.
[2] 张一鸣,高之然. 裂面优化法在岩土及隧道工程中的应用研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 49-55.
[3] 郭小红, 姚再峰, 马文著, 和晓楠. 山岭隧道洞口段工程地质灾害风险评价的数学模型及应用[J]. 隧道与地下工程灾害防治, 2019, 1(4): 75-84.
[4] 张治国, 张洋彬, 王志伟, 方蕾, 马少坤, 师敏之, 魏纲. 类矩形截面隧道开挖诱发邻近管线变形模型试验与数值模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 85-96.
[5] 李利平,贺鹏,石少帅,刘洪亮,胡杰,秦承帅. 隧道施工过程巨石垮塌研究现状、问题与对策研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 22-31.
[6] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[7] 谭忠盛. 隧道与地下工程建设理念及关键技术——记王梦恕院士的主要学术思想和科研成就[J]. 隧道与地下工程灾害防治, 2019, 1(2): 1-6.
[8] 鲜国,石少帅,赵勇,肖广智,喻渝,王俊涛,卜林. 强富水隧道下穿河段突涌水灾害综合防控方法研究与应用[J]. 隧道与地下工程灾害防治, 2019, 1(2): 74-82.
[9] 王明年,于丽,李琦,王旭. 高速铁路隧道防灾疏散救援技术研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(2): 13-23.
[10] 田四明,赵勇,石少帅,胡杰. 中国铁路隧道建设期典型灾害防控方法现状、问题与对策[J]. 隧道与地下工程灾害防治, 2019, 1(2): 24-48.
[11] 王焕. 大直径泥水盾构穿越无加固条件沉降敏感带扰动控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 107-113.
[12] 焦玉勇,张为社,欧光照,邹俊鹏,陈光辉. 深埋隧道钻爆法开挖段突涌水灾害的形成机制及防控研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 36-46.
[13] 谭忠盛. 热处理高强钢筋格栅在隧道工程应用的试验研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 86-92.
[14] 陈建勋,罗彦斌. 大跨度黄土公路隧道结构稳定性及控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 93-101.
[15] 靖洪文,蔚立元,苏海健,顾金才,尹乾. 深部隧(巷)道围岩突水灾变演化试验系统研制及应用[J]. 隧道与地下工程灾害防治, 2019, 1(1): 102-110.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn