Please wait a minute...
 
隧道与地下工程灾害防治  2020, Vol. 2 Issue (2): 31-40    
  本期目录 | 过刊浏览 | 高级检索 |
基于离散元分析的砂土深埋盾构隧道土压力计算方法
刘宏达1,2,杨天亮3,张冬梅1,2*
1. 同济大学岩土及地下工程教育部重点实验室, 上海 200092;2. 同济大学地下建筑与工程系, 上海 200092;3. 自然资源部地面沉降监测与防治重点实验室, 上海市地质调查研究院, 上海 200072
DEM simulation of vertical earth pressure on deep tunnel in sand
LIU Hongda1,2, YANG Tianliang3, ZHANG Dongmei1,2*
1. Key Laboratory of Geotechnical and Underground Engineering of Minister of Education, Shanghai 200092, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
3. Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Natural Resources, Shanghai Institute of Geological Survey, Shanghai 200072, China
下载:  PDF (16819KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着城市地下空间的进一步开发利用,盾构隧道埋深不断增加,合理确定深埋盾构隧道上方的垂直土压力是合理进行管片设计的关键。随着隧道埋深增加,土拱效应明显,深埋隧道上方会形成稳定的松动区。利用离散元软件PFC2D对深埋盾构隧道在砂土中的开挖进行数值模拟,通过观察隧道上方松动区形状,对TERZAGHI松动土压力计算公式进行改进,提出砂土中深埋隧道上方松动土压力的计算方法。结果表明:与TERZAGHI理论假定的直立滑动面不同,深埋盾构隧道松动区为三角形;松动区滑动面上的侧压力系数大于TERZAGHI的建议值。通过与现场实测数据进行对比分析,验证了该公式的合理性,该成果可用于深埋盾构隧道的垂直土压力计算。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宏达
杨天亮
张冬梅
关键词:  深埋隧道  垂直土压力  砂土  离散元    
Abstract: With the development and utilization of urban underground space, deep buried shield tunnels get more and more popular. How to determine the vertical earth pressure above deep buried shield tunnel is the key issue for reasonable segment design. With the increase of tunnel depth, the soil arch effect is increased and the disturbed zone will be formed above the tunnel. Numerical investigation of the excavation of deep buried tunnel in sand was carried out using PFC2D to observe the shape of the disturbed zone above the tunnel. Based on it, a modified failure mechanism of TERZAGHI was improved and a new computing method of vertical earth pressure above deep buried tunnel in sand was proposed. The results showed that the disturbed zone was triangular, the sliding surface was not vertical which was assumed by TERZAGHI. The lateral pressure coefficient of the sliding surface was larger than the suggested value of TERZAGHI. Finally, the results of the proposed method was verified using the field observed data. The proposed method can be used to analyze the vertical earth pressure above deep buried tunnel.
Key words:  deep buried tunnel    vertical earth pressure    sand    discrete element method
                    发布日期:  2020-11-04      期的出版日期:  2020-11-04
中图分类号:  U455.43  
基金资助: 国家自然科学基金资助项目(41772295)
作者简介:  刘宏达(1993— ),男,辽宁本溪人,硕士研究生在读,主要研究方向为深埋盾构隧道结构性性态分析. E-mail: hongda2168@163.com. *通信作者简介:张冬梅(1975— ),女,山东菏泽人,博士,教授,博士生导师,主要研究方向为软土盾构隧道长期性态及运营隧道结构安全. E-mail:dmzhang @tongji.edu.com
引用本文:    
刘宏达,杨天亮,张冬梅. 基于离散元分析的砂土深埋盾构隧道土压力计算方法[J]. 隧道与地下工程灾害防治, 2020, 2(2): 31-40.
LIU Hongda, YANG Tianliang, ZHANG Dongmei. DEM simulation of vertical earth pressure on deep tunnel in sand. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(2): 31-40.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2020/V2/I2/31
[1] 李鹏飞, 周烨, 伍冬. 隧道围岩压力计算方法及其适用范围[J]. 中国铁道科学, 2013, 34(6):55-60. LI Pengfei, ZHOU Ye, WU Dong. Calculation methods for surrounding rock pressure and application scopes[J]. China Railway Science, 2013, 34(6):55-60.
[2] 李雪, 周顺华, 宫全美,等. 大断面深埋高水压地铁盾构隧道周边土压力作用模式评价[J]. 岩土力学, 2015, 36(5):1415-1420. LI Xue, ZHOU Shunhua, GONG Quanmei, et al. Evaluation of earth pressure around a deeply buried metro shield tunnel with a large cross-section under high water pressure conditions[J]. Rock and Soil Mechanics, 2015, 36(5):1415-1420.
[3] 钟小春, 朱伟. 盾构衬砌管片土压力反分析研究[J]. 岩土力学, 2006, 27(10):1743-1748. ZHONG Xiaochun, ZHU Wei. Back analysis of soil pressure acting on shield lining segment[J]. Rock and Soil Mechanics, 2006, 27(10):1743-1748.
[4] TERZAGHI K. Theoretical soil mechanics[M]. New York, USA: Wiley, 1943.
[5] EVANS C H. An examination of arching in granular soils[D]. Cambridge, UK: Massachusetts Institute of Technology, 1983.
[6] TIEN H J. A literature study of the arching effect[D]. Taipei, China: Taiwan University, 1990: 123-125.
[7] 陈国舟, 周国庆. 考虑土拱效应的倾斜滑移面间竖向应力研究[J]. 岩土力学, 2013, 34(9):2643-2648. CHEN Guozhou, ZHOU Guoqing. Study of vertical stress within inclined slip surfaces considering soil arching[J]. Rock and Soil Mechanics, 2013, 34(9):2643-2648.
[8] 武军, 廖少明, 张迪. 基于颗粒流椭球体理论的隧道极限松动区与松动土压力[J]. 岩土工程学报, 2013, 35(4):714-721. WU Jun, LIAO Shaoming, ZHANG Di. Loosening zone and earth pressure around tunnels in sandy soils based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4):714-721.
[9] 宫全美, 张润来, 周顺华,等. 基于颗粒椭球体理论的隧道松动土压力计算方法[J]. 岩土工程学报, 2017, 39(1):99-105. GONG Quanmei, ZHANG Runlai, ZHOU Shunhua, et al. Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1):99-105.
[10] 周小文, 濮家骝, 包承钢. 砂土中隧洞开挖稳定机理及松动土压力研究[J]. 长江科学院院报, 1999, 16(4):9-14. ZHOU Xiaowen, PU Jialiu, BAO Chenggang. Study on stability mechanism and relaxed soil pressure in sandy soil during excavation[J]. Journal of Yangtze River Entific Research Institute, 1999, 16(4):9-14.
[11] SHUKLA S K, SIVAKUGAN N. A simplified extension of the conventional theory of arching in soils[J]. International Journal of Geotechnical Engineering, 2009, 3(3):353-359.
[12] 加瑞. 盾构隧道垂直土压力松动效应的研究[D]. 南京:河海大学, 2007. JIA Rui. Study on relaxation effect of vertical soil pressure for shield tunnel[D]. Nanjing: Hohai University, 2007.
[13] 黎春林. 盾构隧道施工松动土压力计算方法研究[J]. 岩土工程学报, 2014, 36(9):1714-1720. LI Chunlin. Method for calculating loosening earth pressure during construction of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9):1714-1720.
[14] ZHANG H F, ZHANG P, ZHOU W, et al. A new model to predict soil pressure acting on deep burial jacked pipes[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2016, 60(Complete):183-196.
[15] MARSTON A. The theory of external loads on closed conduits in the light of the latest experiments[R]. Iowa, USA: Iowa Engineering Experiment Station, 1930.
[16] JAKY J. Pressure in soils[C] //Proceedings Second International Conference on Soil Mechanics and Foundations Engineering. Rotterdam, Netherlands:[s.n.] , 1936.
[17] KRYNINE D P. Discussion of stability and stiffness of cellular cofferdams by Karl Terzaghi[J]. Transactions of the American Society of Civil Engineers, 1945, 110(1):1120-1186.
[18] 陈若曦, 朱斌, 陈云敏,等. 基于主应力轴旋转理论的修正Terzaghi松动土压力[J]. 岩土力学, 2010, 31(5):1402-1406. CHEN Ruoxi, ZHU Bin, CHEN Yunmin, et al. Modified Terzaghi loozening earth pressure based on theory of main stress axes rotation[J]. Rock and Soil Mechanics, 2010, 31(5):1402-1406.
[19] LADANYI B, HOYAUX B. A study of the trap-door problem in a granular mass[J]. Canadian Geotechnical Journal, 1969, 6(1): 1-14.
[20] SINGH S, SIVAKUGAN N, SHUKLA S K. Can soil arching be insensitive to φ?[J]. International Journal of Geomechanics, 2010, 10(3): 124-128.
[21] IGLESIA G R, EINSTEIN H H, WHITMAN R V. Investigation of soil arching with centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 1-13.
[22] 申志福, 蒋明镜, 朱方园, 等. 离散元微观参数对砂土宏观参数的影响[J]. 西北地震学报, 2011, 33(增刊1):160-165. SHEN Zhifu, JIANG Mingjing, ZHU Fangyuan, et al. Influence of the micro parameters of discrete element on the macro parameters of sands[J]. Northwestern Seismological Journal, 2011, 33(Supp.1):160-165.
[23] 蒋明镜, 王富周, 朱合华. 考虑尾隙的盾构隧道土压力离散元数值分析[J]. 地下空间与工程学报, 2010, 6(1):28-32. JIANG Mingjing, WANG Fuzhou, ZHU Hehua. Numerical simulation on earth pressure for shield tunnels incorporating tail gaps by DEM[J]. Chinese Journal of Underground Space & Engineering, 2010, 6(1):28-32.
[24] IGLESIA G R, EINSTEIN H H, WHITMAN R V. Validation of centrifuge model scaling for soil systems via trapdoor tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11):1075-1089.
[25] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7):579-597.
[26] 朱伟, 钟小春, 加瑞. 盾构隧道垂直土压力松动效应的颗粒流模拟[J]. 岩土工程学报, 2008,30(5):750-754. ZHU Wei, ZHONG Xiaochun, JIA Rui. Simulation on relaxation effect of vertical earth pressure for shield tunnels by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5):750-754.
[27] 王俊, 方勇, 何川,等. 盾构隧道施工对砂性地层的扰动及管片受荷特征[J]. 地下空间与工程学报, 2015, 11(1):156-162. WANG Jun, FANG Yong, HE Chuan, et al. Disturbance of shield tunnel construction to sandy stratum and load bearing characteristics of segment lining[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(1):156-162.
[28] 张君禄, 段峰虎, 廖文来,等. 湛江湾跨海盾构隧道管片现场监测试验研究[J]. 岩石力学与工程学报, 2014,33(增刊1):2878-2884. ZHANG Junlu, DUAN Fenghu, LIAO Wenlai, et al. Field monitoring experimental study of sea-crossing shield tunnel segment in Zhanjiang Bay[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 33(Suppl.1):2878-2884.
[1] 赵志宏, 郭铁成, 林涛, 陈思聪. 考虑粗糙度影响的裂隙岩体开挖损伤区分布规律[J]. 隧道与地下工程灾害防治, 2019, 1(3): 77-86.
[2] 梁立唯, 刘春, 秦岩, 朱晨光, 邓尚. 基于MatDEM的盾构滚刀破岩离散元建模与数值模拟[J]. 隧道与地下工程灾害防治, 2019, 1(3): 116-122.
[3] 焦玉勇,张为社,欧光照,邹俊鹏,陈光辉. 深埋隧道钻爆法开挖段突涌水灾害的形成机制及防控研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 36-46.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn