Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (2): 43-48    DOI: 10.19952/j.cnki.2096-5052.2021.02.05
  黄土隧道及地下工程建造新理论与新技术专题 本期目录 | 过刊浏览 | 高级检索 |
帷幕注浆在富水大跨度黄土隧道中的应用
宋瑞霞1,赵永虎2*,米维军3,韩侃2,蒋育华2
1. 兰州石化职业技术学院土木工程学院, 甘肃 兰州 730060;2. 中铁西北科学研究院有限公司, 甘肃 兰州 730000;3. 中国中铁科学研究院有限公司, 四川 成都 611731)
Application of curtain grouting in watery and large-span loess tunnel
SONG Ruixia1, ZHAO Yonghu2*, MI Weijun3, HAN Kan2, JIANG Yuhua2
1. School of Civil Engineering, Lanzhou Petrochemical College of Vocational Technology, Lanzhou 730060, Gansu, China;
2. Northwest Research Institute Co., Ltd., of CREC, Lanzhou 730000, Gansu, China;
3. China Raliway Academy Co., Ltd., Chengdu 611731, Sichuan, China
下载:  PDF (954KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对目前富水大跨度黄土隧道施工中出现大变形、易于塌方等工程难题,结合银西高铁已建成驿马1号隧道富水黄土地段现场帷幕注浆试验和室内试验结果,分析帷幕注浆在富水大跨度黄土隧道围岩加固及改善稳定性方面的应用效果。结果表明:帷幕注浆压力随注浆时间呈“急剧增长—缓慢增长—轻微下降—急剧增长”的四阶段变化趋势,洞内帷幕注浆能够有效填充注浆范围黄土层内孔隙并挤压密实,减缓黄土渗透性,降低围岩含水状态,明显改善注浆范围内围岩的物理力学性质,物理力学参数平均增幅可达10%~35%。帷幕注浆可以有效减小洞内围岩变形量约20%~70%,能够减轻掌子面土体溜滑、拱顶塌方等灾害。通过帷幕注浆,增强了开挖面的自稳性,提高了围岩的可塑性,提升围岩强度与整体稳定性。研究成果不仅指导现场施工,同时对优化黄土隧道的支护体系提供了依据,对同类特征隧道施工具有借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋瑞霞
赵永虎
米维军
韩侃
蒋育华
关键词:  帷幕注浆  富水大跨度黄土隧道  银西高铁  效果评价  含水率    
Abstract: In view of the current engineering problems of large deformation, easy collapse in the construction of watery and large-span loess tunnel, combined with the results of on-site curtain grouting test and indoor test for the watery and large-span Yima No. 1 loess tunnel of the Yinchuan-Xian High-Speed Railway, and then the application effects of surrounding rock reinforcement and stability improvement of loess tunnels was analyzed. The results showed that the curtain grouting pressure showed a four-stage change trend of “rapid increase-slow increase-slight decrease-sharp increase” with the grouting time. The curtain grouting in the cave could effectively fill the pores in the loess layer in the grouting range, compress and compact the soils, slow down the permeability of the loess, reduce the water content of the surrounding rock, and significantly improve the physical and mechanical properties of the surrounding rock within the grouting range. The average increased in physical and mechanical parameters could be up to 10%-35%. The curtain grouting could effectively reduce the deformation of the surrounding rock in the cave by about 20% to 70%, and could alleviate disasters such as slippery soils on the face of the tunnel and collapse of the vault. Through the curtain grouting, the self-stability of the excavation surface was enhanced, the plasticity of the surrounding rock was improved, and the strength and overall stability of the surrounding rock was improved. The research results not only guided the on-site construction, but also provided a basis for optimizing the support system of the loess tunnels, which could provide reference significance for the construction of similar characteristic tunnels.
Key words:  curtain grouting    watery and large-span loess tunnel    Yinchuan-Xi'an High-Speed Railway    effect evaluation    moisture content
收稿日期:  2021-03-09      修回日期:  2021-04-30      发布日期:  2021-06-20     
中图分类号:  U45  
基金资助: 国家自然科学基金项目(51868038);中国铁路总公司科技研究开发计划课题(2017G007-G)
通讯作者:  赵永虎(1987— ),男,甘肃临夏人,硕士,高级工程师,主要研究方向为隧道工程及地质灾害防治.    E-mail:  zhaoyh2012@lzu.edu.cn
作者简介:  宋瑞霞(1988— ),女,甘肃静宁人,硕士,讲师,主要研究方向为新材料研发及应用.E-mail:1023163192@qq.com.
引用本文:    
宋瑞霞, 赵永虎, 米维军, 韩侃, 蒋育华. 帷幕注浆在富水大跨度黄土隧道中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(2): 43-48.
SONG Ruixia, ZHAO Yonghu, MI Weijun, HAN Kan, JIANG Yuhua. Application of curtain grouting in watery and large-span loess tunnel. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 43-48.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I2/43
[1] 《中国公路学报》编辑部.中国隧道工程学术研究综述·2015[J].中国公路学报, 2015, 28(5): 1-65. Ditorial Department of China Journal of Highway and Transport. Review on China's tummel engineering research: 2015[J]. China Journal of Highway and Transport, 2015, 28(5): 1-65.
[2] 陈学明. 帷幕注浆堵水技术在歌乐山隧道施工中的应用[J].石家庄铁道学院学报, 2005, 18(4): 108-111. CHEN Xueming. Water-stopping with curtain grouting in tunnel construction[J].Journal of Shijiazhuang Railway Institute, 2005, 18(4): 108-111.
[3] 陈卫忠,袁敬强,黄世武,等. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38. CHEN Weizhong,YUAN Jingqiang,HUANG Shiwu,et al. Treatment technology of water and mud inrush disaster in water-rich weathered granite tunnels[J]. Hazard Control in Tunnelling and Underground Engineering,2019, 1(3): 32-38.
[4] 张伟杰, 李术才, 魏久传, 等. 富水破碎岩体帷幕注浆模型试验研究[J]. 岩土工程学报, 2015, 37(9): 1627-1634. ZHANG Weijie, LI Shucai, WEI Jiuchuan, et al. Model tests on curtain grouting in water-rich broken rock mass[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1627-1634.
[5] 秦鹏飞.劈裂注浆加固技术及研究进展[J]. 煤炭科学技术, 2020, 48(6): 64-70. QIN Pengfei.Technology and research progress of split grouting reinforcement[J]. Coal Science and Technology,2020, 48(6): 64-70.
[6] 杨旭. 某隧道衬砌参数与注浆加固的数值模拟分析[J]. 北方交通, 2016(7): 136-140. YANG Xu. Analysis on numerical simulation of lining parameters and grouting reinforcement of a tunnel[J]. Northern Communications, 2016(7): 136-140.
[7] 刘志春, 王梦恕. 隧道工程因素对地下水环境影响研究[J]. 岩土力学, 2015, 36(增刊2): 281-288. LIU Zhichun, WANG Mengshu. Research on impact of tunnel engineering factors on groundwater environment[J]. Rock and Soil Mechanics, 2015, 36(Suppl.2): 281-288.
[8] 来弘鹏, 康佐, 谢永利, 等.地铁区间隧道黄土地层注浆预加固技术研究[J]. 中国铁道科学, 2014, 35(1): 47-54. LAI Hongpeng, KANG Zuo, XIE Yongli, et al. Grouting pre-reinforcement technology for metro tunnel in loess strata[J]. China Railway Science, 2014, 35(1): 47-54.
[9] 刘鹏飞, 梁树文, 郑亮亮. 帷幕注浆加固法在高含水率黄土隧道中的应用[J]. 地下空间与工程学报, 2018, 14(4): 1137-1144. LIU Pengfei, LIANG Shuwen, ZHENG Liangliang. Application of curtain grouting reinforcement technique in tunnel with high water content loess stratum[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(4): 1137-1144.
[10] 张庆松,张连震,李鹏,等. 地下工程富水软弱地层注浆加固理论研究新进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 47-57. ZHANG Qingsong, ZHANG Lianzhen, LI Peng, et al. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47-57.
[11] 薛晓辉, 张军, 宿钟鸣, 等. 富水黄土隧道注浆加固机制及效果评价[J]. 重庆交通大学学报(自然科学版), 2015, 34(4): 34-38. XUE Xiaohui, ZHANG Jun, SU Zhongming, et al. Grouting pre-reinforcement mechanism and effect evaluation in water-rich loess tunnel[J].Journal of Chongqing Jiaotong University(Natural Science),2015, 34(4): 34-38.
[12] 中国铁路总公司. 铁路黄土隧道技术规范:Q/CR 9511—2014[S].北京: 中国铁道出版社, 2014.
[13] 付士根, 何治亭, 张乃宝, 等. 矿山帷幕注浆堵水隔障机理研究[J]. 中国安全生产科学技术, 2009, 5(3): 51-55. FU Shigen, HE Zhiting, ZHANG Naibao, et al. Study on mechanism curtain grouting of mines curtain to plug up water[J]. Journal of Safety Science and Technology,2009, 5(3): 51-55.
[14] 祝俊, 梁军林, 容洪流, 等. 富水全强风化花岗岩隧道突水突泥灾害机制与帷幕注浆技术[J]. 科学技术与工程, 2020, 20(26):10918-10926. ZHU Jun, LIANG Junlin, RONG Hongliu, et al. Water and mud inrush disaster mechanism and curtain grouting technology on granite tunnel with rich water and strong weathering[J]. Science Technology and Engineering, 2020, 20(26): 10918-10926.
[15] 王作成, 李奋强. 复杂煤矿区帷幕注浆浆液及其隔水机理[J].中南大学学报(自然科学版), 2013, 44(2): 778-784. WANG Zuocheng, LI Fenqiang. Slurry water curtain grouting and its mechanism in complex coal mine area[J].Journal of Central South University(Science and Technology), 2013, 44(2): 778-784.
[1] 夏开文,徐颖,陈荣. 考虑深部赋存条件的岩石动态破坏试验研究进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 58-75.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn