Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels
DENG Mingjiang1, LIU Bin2
(1. Xinjiang Irtysh River Basin Project Development and Construction Administration, Urumchi 830000, Xinjiang, China;
2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China
Abstract: In recent years, in some super-long water diversion tunnels, construction methods of multi-headed excavation using multiple TBMs have emerged, forming the characteristics of TBM cluster tunneling. The northern Xinjiang Water Supply Phase II Project is a typical representative. The geological condition of this project is extremely complex. Tunnel construction is faced with many disaster risks such as collapse, water inrush, soft rock deformation with high groundwater, and TBM jamming. There are many high-risk sections and it is of great necessary to carry out geological forward-prospecting. In views of the construction characteristics of TBM cluster and the challenges faced by geological forward-prospecting, the geological conditions and major disaster risks of the project were analyzed, and the features of commonly used geological forward-prospecting techniques were compared. The applicability of forward-prospecting methods under TBM cluster construction conditions as well as the corresponding technical challenges were discussed in detail, and the countermeasures were proposed accordingly. The development direction of TBM geological forward-prospecting technology was further discussed. Recommendations were proposed from the following five aspects: expert decision-making and fusion diagnosis of forward-prospecting for TBM clusters, robust and efficient real-time geological forward-prospecting technology, correct utilization and construction permit of geological forward-prospecting results, TBM intelligent excavation based on “transparent” geological rock mass information and standardization of TBM geological forward-prospecting, etc. These recommendations will be focused and deployed in advance, which will provide guidance for future forward-prospecting in tunnel construction with TBM cluster.
邓铭江, 刘斌. 超特长隧洞TBM集群施工超前地质预报的挑战、对策与发展方向[J]. 隧道与地下工程灾害防治, 2019, 1(1): 8-19.
DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8-19.
[1] 中华人民共和国国务院办公厅. 中华人民共和国国民经济和社会发展第十三个五年规划纲要[EB/OL] (2016-03-17)[2018-03-07]. http://www.gov.cn/xinwen/2016-03/17/content-5054992.htm. [2] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6): 1090-1113. LI Shucai, LIU Bin, SUN Huaifeng, et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics & Engineering, 2014, 33(6): 1090-1113. [3] 邓铭江. 深埋超特长输水隧洞 TBM 集群施工关键技术探析[J]. 岩土工程学报, 2016, 38(4): 577-587. DENG Mingjiang. Key techniques for group construction of deep-buried and super-long water transfer tunnel by TBM[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 577-587. [4] DENG Mingjiang. Challenges and thoughts on risk management and control for the group construction of a super-long tunnel by TBM[J]. Engineering, 2018, 4(1): 112-122. [5] 李术才,许振浩,黄鑫,等. 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J]. 岩石力学与工程学报,2018,37(5): 1041-1069. LI Shucai, XU Zhenhao, HUANG Xin, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J]. Chinese Journal of Rock Mechanics & Engineering, 2018, 37(5): 1041-1069. [6] 许振浩, 李术才, 李利平, 等. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. 岩土力学, 2011, 32(6): 1757-1766. XU Zhenhao, LI Shucai, LI Liping, et al. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. Rock & Soil Mechanics, 2011, 32(6):1757-1766. [7] 杨光, 刘敦文, 褚夫蛟, 等. 基于云模型的隧道塌方风险等级评价[J]. 中国安全生产科学技术, 2015, 11(6): 95-101. YANG Guang, LIU Dunwen, CHU Fujiao, et al. Evaluation on risk grade of tunnel collapse based on cloud model[J]. Journal of Safety Science & Technology, 2015, 11(6): 95-101. [8] 刘磊磊. 高地应力地区隧道岩爆预测研究[D]. 长沙:中南大学, 2014. LIU Leilei. Prediction of rockburst while tunnelling in high geological stress[D]. Changsha: Central South University, 2014. [9] 丁宇. 锦屏二级水电站引水隧道TBM(隧道掘进机)施工岩爆综合预测研究[D]. 北京:北京工业大学, 2012. DING Yu. Study on rock bursts prediction of TBM construction at headrace tunnels of Jinping Ⅱhydropower station[D]. Beijing: Beijing University of Technology, 2012. [10] 邱道宏. 括苍山高速公路隧道岩爆非线性预测研究[D]. 长春: 吉林大学, 2008. QIU Daohong. Study on nonlinear prediction of rockburst of kuocangshan freeway tunnel[D]. Changchun: Jilin University, 2008. [11] 马超锋, 李晓, 成国文,等. 工程岩体完整性评价的实用方法研究[J]. 岩土力学, 2010, 31(11):3579-3584. MA Chaofeng, LI Xiao, CHENG Guowen, et al. Study of practical approach to assess integrality of engineering rock mass[J]. Rock & Soil Mechanics, 2010, 31(11): 3579-3584. [12] 张国威. 基于统计分析的隧道塌方规律及围岩压力分布特征研究[D]. 北京:北京交通大学, 2017. ZHANG Guowei. Study on tunnel collapse law and distribution characteristics of surrounding rock pressure based on statistical analysis[D]. Beijing: Beijing Jiaotong University, 2017. [13] 王银. 高地应力条件下软岩隧道初期支护力学效应研究[D]. 重庆:重庆大学, 2013. WANG Yin. Study on the initial support's mechanical effects of soft rock tunnel under high geo-stress[D]. Chongqing: Chongqing University, 2013. [14] 范建海, 陈志超, 夏述光. 软岩隧道矿山法施工大变形风险评估[J]. 铁道建筑, 2013(7):52-56. [15] 程乾生. 属性识别理论模型及其应用[J]. 北京大学学报(自然科学版), 1997, 33(1): 12-20. CHENG Qiansheng. Attribute recognition theoretical model with application[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1997, 33(1):12-20. [16] 程乾生. 属性集和属性综合评价系统[J]. 系统工程理论与实践, 1997, 17(9): 1-8. CHENG Qiansheng. Attribute sets and attribute synthetic assessment system[J]. Systems Engineering—Theory & Practice, 1997, 17(9): 1-8. [17] 李术才, 石少帅, 李利平, 等. 山岭隧道塌方风险评价的属性识别模型与应用[J]. 应用基础与工程科学学报, 2013, 21(1): 147-158. LI Shucai, SHI Shaoshuai, LI Liping, et al. Attribute recognition model and its application of mountain tunnel collapse risk assessment[J]. Journal of Basic Science & Engineering, 2013, 21(1): 147-158. [18] HWANG J H, LU C C. A semi-analytical method for analyzing the tunnel water inflow[J]. Tunnelling and Underground Space Technology, 2007, 22(1): 39-46. [19] SCHEPERS R, RAFAT G, GELBKE C, et al. Application of borehole logging, core imaging and tomography to geotechnical exploration[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(6): 867-876. [20] ASHIDA Y. Seismic imaging ahead of a tunnel face with three-component geophones[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(6): 823-831. [21] JETSCHNY S, BOHLEN T, KURZMANN A. Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves[J]. Geophysical Prospecting, 2011, 59(5): 934-946. [22] LEE I M, TRUONG Q H, KIM D H, et al. Discontinuity detection ahead of a tunnel face utilizing ultrasonic reflection: laboratory scale application[J]. Tunnelling & Underground Space Technology, 2009, 24(2): 155-163. [23] ALIMORADI A, MORADZADEH A, NADERI R, et al. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks[J]. Tunnelling and Underground Space Technology. 2008, 23(6): 711-717. [24] 刘志刚,刘秀峰. TSP(隧道地震勘探)在隧道隧洞超前预报中的应用与发展[J]. 岩石力学与工程学报,2003,22(8):1399-1402. LIU Zhigang, LIU Xiufeng. TSP application and development in tunnel lead forecast[J]. Chinese Journal of Rock Mechanics & Engineering, 2003, 22(8): 1399-1402. [25] OTTO R, BUTTON Edward, BRETTEREBNER Hetfried, et al. The application of TRT-ture reflection tomography-at the Unterwald Tunnel[J]. Geophysics, 2002, 20(2): 51-56. [26] ZHAO Yonggui, JIANG Hui, ZHAO Xiaopeng. Tunnel seismic tomography method for geological prediction and its application[J].Applied Geophysics, 2006, 3(2):69-74. [27] 吴俊, 毛海和, 应松, 等. 地质雷达在公路隧道短期地质超前预报中的应用[J]. 岩土力学, 2003(增刊1): 154-157. WU Jun, MAO Haihe, YING Song, et al. Application of ground probing radar to short-term geological forecast for tunnel construction[J]. Rock & Soil Mechanics, 2003(Suppl.1): 154-157. [28] 刘斌, 李术才, 李树忱, 等. 复信号分析技术在地质雷达预报岩溶裂隙水中的应用研究[J]. 岩土力学, 2009, 30(7): 2191-2196. LIU Bin, LI Shucai, LI Shuchen, et al. Study of application of complex signal analysis to predicting karst-fractured ground water with GPR[J]. Rock & Soil Mechanics, 2009, 30(7): 2191-2196. [29] RISSAFI Y, TALBI L, GHADDAR M. Experimental characterization of an uwb propagation channel in underground mines[J]. IEEE Transactions on Antennas & Propagation, 2012, 60(1): 240-246. [30] 刘新荣, 刘永权, 杨忠平, 等. 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报, 2015, 37(增刊2): 51-56. LIU Xinrong, LIU Yongquan, YANG Zhongping, et al. Synthetic advanced geological prediction technology for tunnels based on GPR[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Suppl.2): 51-56. [31] 孙怀凤, 李术才, 李貅, 等. 隧道瞬变电磁多点阵列式探测方法研究[J]. 岩石力学与工程学报, 2011, 30(11): 2225-2233. SUN Huaifeng, LI Shucai, LI Xiu, et al. Research on transient electromagnetic multipoint array detection method in tunnel[J]. Chinese Journal of Rock Mechanics & Engineering, 2011, 30(11): 2225-2233. [32] 姜志海, 岳建华, 刘树才. 多匝重叠小回线装置的矿井瞬变电磁观测系统[J]. 煤炭学报, 2007, 32(11): 1152-1156. JIANG Zhihai, YUE Jianhua, LIU Shucai. Mine transient electromagnetic observation system of small multi-turn coincident configuration[J]. Journal of China Coal Society, 2007, 32(11):1152-1156. [33] 刘志新. 矿井瞬变电磁场分布规律与应用研究[D].徐州:中国矿业大学,2008. LIU Zhixin. Study on the distribution and application of mine transient electromagnetic field[D]. Xuzhou: China University of Mining and Technology, 2008. [34] 杨海燕. 矿用多匝小回线源瞬变电磁场数值模拟与分布规律研究[D].徐州:中国矿业大学,2009. YANG Haiyan. Study on the numerical simulation and distribution regularity of transient electromagnetic field with mine-used multi small loop[D]. Xuzhou: China University of Mining and Technology, 2009. [35] 卢绪山. 隧道TBM机瞬变电磁响应三维并行模拟及干扰去除研究[D].西安:长安大学,2014. LU Xushan. The simulation of Tunnel Boring Machine's TEM response and the elimination of its response[D]. Xi'an: Chang'an University, 2014. [36] 卢绪山, 李貅, 孙怀凤, 等. 隧道 TBM 机瞬变电磁响应三维并行正演模拟[C] //2014 年中国地球科学联合学术年会.北京:[出版者不详] , 2014. LU Xushan, LI Xiu, SUN Huaifeng, et al. The simulation of tunnel boring machine's TBM response[C] //Annual meeting of Chinese geoscience union. Beijing:[s.n.] , 2014. [37] 刘斌, 李术才, 李树忱, 等. 隧道含水构造直流电阻率法超前探测研究[J]. 岩土力学, 2009, 30(10): 3093-3101. LIU Bin, LI Shucai, LI Shuchen, et al. Study of advanced detection of water-bearing geological structures with DC resistivity method[J]. Rock & Soil Mechanics, 2009, 30(10): 3093-3101. [38] 王鹰, 陈强, 魏有仪, 等. 红外探测技术在圆梁山隧道突水预报中的应用[J]. 岩石力学与工程学报, 2003, 22(5): 855-857. WANG Ying, CHEN Qiang, WEI Youyi, et al. Application of infrared acquisition technology in prediction of water gushing in yuanliangshan tunnel[J]. Chinese Journal of Rock Mechanics & Engineering, 2003, 22(5):855-857. [39] 黄忆龙. 红外线探水法在隧道超前探水预报中的应用[J]. 煤炭技术, 2007, 26(4): 126-127. HUANG Yilong. Application for prediction of water by using infrared ray method in tunnel[J]. Coal Technology, 2007, 26(4): 126-127. [40] 李术才, 聂利超, 刘斌, 等. 多同性源阵列电阻率法隧道超前探测方法与物理模拟试验研究[J]. 地球物理学报, 2015, 58(04): 1434-1446. LI Shucai, NIE Lichao, LIU Bin, et al. Advanced detection and physical model test based on multi-electrode sources array resistivity method in tunnel[J]. Chinese Journal of Geophysics, 2015, 58(04): 1434-1446. [41] 宋杰. 隧道施工不良地质三维地震波超前探测方法及其工程应用[D]. 济南: 山东大学, 2016. SONG Jie. The three-dimensional seismic ahead prospecting method and its application for adverse geology in tunnel construction[D]. Jinan: Shandong University, 2016. [42] LIU Bin, CHEN Lei, LI Shucai, et al. Three-dimensional seismic ahead-prospecting method and application in TBM tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(12): 04017090. [43] KAUS A, BOENING W. BEAM: geoelectrical ahead monitoring for TBM-drives[J]. Geomechanics and Tunnelling, 2008, 1(5): 442-449. [44] LÜTH S, GIESE R, RECHLIN A. A seismic exploration system around and ahead of tunnel excavation-Onsite[C] //World Tunnel Congress. Agra, India:[s.n.] , 2008:119-125. [45] RECHLIN A, LÜTH S, GIESE R. OnSITE: Integrated seismic imaging and interpretation for tunnel excavation[C] //Proceedings of the International Conference on Rock Joints and Jointed Rock Masses.[S.l.] :[s.n.] , 2009: 1-7. [46] 李苍松, 谷婷, 丁建芳, 等. 适合于TBM施工的HSP声波反射法地质超前预报[J]. 工程地质学报, 2008, 16(增刊1): 111-115. LI Cangsong, GU Ting, DING Jianfang, et al. Horizontal sound probing(HSP)geology prediction method appropriated to TBM construction[J]. Journal of Engineering Geology, 2008, 16(Suppl.1): 111-115. [47] 卢松, 李苍松, 吴丰收, 等. HSP 法在引汉济渭TBM隧道地质预报中的应用[J]. 隧道建设, 2017, 37(2): 236-241. LU Song, LI Cangsong, WU Fengshou, et al. Application of HSP sound wave reflection method to geological prediction of TBM tunnel of Hanjiang River-Weihe River Water diversion[J]. Tunnel Construction, 2017, 37(2): 236-241. [48] 叶智彰. HSP声波反射法地质超前预报在西秦岭特长隧道TBM施工中的应用[J]. 铁道建筑技术, 2011(7): 94-98. YE Zhizhang. The application of HSP acoustic reflection advance geological forecast method in West Qinling Tunnel Construction of TBM[J]. Railway Construction Technology, 2011(7): 94-98. [49] LI Shucai, LIU Bin, XU Xinji, et al. An overview of ahead geological prospecting in tunneling[J]. Tunnelling and Underground Space Technology, 2017, 63: 69-94. [50] 许振浩, 李术才, 李利平, 等. 基于风险动态评估与控制的岩溶隧道施工许可机制[J]. 岩土工程学报, 2011, 33(11): 1714-1725. XU Zhenhao, LI Shucai, LI Liping, et al. Construction permit mechanism of karst tunnels based on dynamic assessment and management of risk[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1714-1725. [51] 中铁工业. 划时代!中铁工业宣布与纽敦光电联合开发第四代半、第五代掘进机[EB/OL].(2018-05-07)[2018-06-20]. https://mp.weixin.qq.com/s?—biz=MzI4MzY5MjcyOA==&mid=2247485044&idx=1&sn=7ea5b6848736be4cbd155e23d330e40a&chksm=eb879-da3dcf014b56523d3a7214f5d7f32412.