Review on countermeasures and their adaptability evaluation to tunnels crossing active faults
DING Xiuli1, ZHANG Yuting1, ZHANG Chuanjian2, YAN Tianyou2, HUANG Shuling1
1. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, Hubei, China; 2. Hydraulic Complex Design Department, Changjiang Institute of Survey, Planning, Design and Research Co. Ltd., Wuhan 430010, Hubei, China
Abstract: Hydraulic tunnels are widely adopted for water conveyance purpose in the mountainous region of western China. The tunnels usually pass through various stratum with complex occurrence environment and geological conditions, including active faults. Currently, both domestic and foreign codes and regulations regarding tunnel design fail to provide any specifications and recommendations on design philosophy and countermeasures for tunnels crossing active faults and therefore potential threat is posed on the long term stability of water conveyance tunnels. Based on the definition, the classification and the influences of active faults to tunnels, the engineering examples were collected and comprehensive comparisons were made. Totally ten cases regarding tunnels crossing active faults were summarized and the emphasis was placed on the discussion of the design philosophy adopted in each case. It was found that the primary countermeasures consists of four approaches, which were setting up flexible connection section, enlarging excavation dimension, using tubes placed inside the tunnel, and application of composite lining or new materials. Then, the adaptability evaluation of countermeasures for tunnels crossing active faults was reviewed. Some concerning topics and their research progress were summarized and commented. The issues that required further study and improvement were mentioned. Finally, combining the research project “Disaster mechanism of surrounding rock mass and lining structure and countermeasure technology for tunnels crossing active fault”, which was a research program of the National Key Research and Development Program “Efficient Use of Water Resources”, the problems of tunnels crossing active faults were discussed and the potential achievements were prospected.
丁秀丽, 张雨霆, 张传健, 颜天佑, 黄书岭. 隧洞穿越活动断层应对措施及其适应性研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 20-35.
DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20-35.
[1] 刘东燕, 徐锡伟. 活动断层地震灾害预测方法与应用[M]. 北京:科学出版社, 2011:1-1. [2] 唐荣昌, 文德华, 黄祖智,等. 松潘——龙门山地区主要活动断裂带第四纪活动特征[J]. 中国地震, 1991(3):64-71. TANG Rongchang, WEN Dehua, HUANG Zuzhi, et al. The quaternary activity characteristics of several major active faults in the Songpan-Longmenshan regrion[J]. Earthquake Research in China, 1991(3):64-71. [3] 吴中海, 赵希涛, 吴珍汉, 等. 西藏当雄—羊八井盆地的第四纪地质与断裂活动研究[J]. 地质力学学报, 2006, 12(3): 305-316. WU Zhonghai, ZHAO Xitao, WU Zhenhan, et al. Quaternary geology and faulting in the Damxung-Yangbajing Basin, southern Tibet[J]. Journal of Geomechanics, 2006, 12(3): 305-316. [4] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. GB 50287—2006 水力发电工程地质勘察规范[S]. 北京:中国计划出版社,2008:16. [5] 戴联筠, 汤淼兴. 强震区断裂的勘察和地震工程评价[J]. 工程勘察, 1992(5):1-5. DAI Lianyun, TANG Miaoxing. Investigation and seismic engineering evaluation of fractures in high seismic intensity zone[J]. Geotechnical Investigation & Surveying, 1992(5):1-5. [6] AMADEI B, STEPHANSSON O. Rock stress and its measurement[M]. Berlin, Germany: Springer Science & Business Media, 1997: 33-33. [7] 王威, 任青文. 活动断裂对深埋隧洞影响的研究概述[J]. 地震工程与工程振动, 2006, 26(1): 175-180. WANG Wei, REN Qingwen. General introduction to the effect of active fault on deeply buried tunnels[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(1): 175-180. [8] 陶双江, 吉随旺. “5.12”汶川大地震后四川部分公路隧道震害初步分析[J]. 西南公路, 2008(4):120-124. TAO Shuangjiang, JI Suiwang. Preliminary analysis of seismic damage of some road tunnels in Sichuan after “5.12” Wenchuan Earthquake[J]. Southwest Highway, 2008(4):120-124. [9] 申玉生. 高烈度地震区山岭隧道工程抗减震技术[M]. 北京:科学出版社, 2015: 300-310. [10] 李孝波, 薄景山, 李平,等. 地震烈度异常研究的若干进展[J]. 地震学报, 2013, 35(3):430-440. LI Xiaobo, BO Jingshan, LI Ping, et al. Some progress of study on abnormality of seismic intensity[J]. Acta Seismologica Sinica, 2013, 35(3):430-440. [11] 徐锡伟. 活动断层、地震灾害与减灾对策问题[J]. 震灾防御技术, 2006, 1(1):7-14. XU Xiwei. Active faults, associated earthquake disaster distribution and policy for disaster reduction[J]. Technology for Earthquake Disaster Prevention, 2006, 1(1):7-14. [12] ROGERS J, PECK R. Engineering geology of the bay area rapid transit(BART)system, 1964-75[EB/OL]. California, USA: Geolith Consultants, Inc., 2000.[2018-06-11]. http://sonic.net/~mly/www.geolith.com/bart/#orinda. [13] 中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局. 岩土工程勘察规范:GB 50021—2001[S]. 2009年版. 北京:中国建筑工业出版社,2009:65-67. [14] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 城市轨道交通岩土工程勘察规范:GB 50307—2012[S]. 北京:中国计划出版社,2012:55-56. [15] 中华人民共和国交通运输部. 公路隧道设计细则:JTG/T D70—2010[S]. 北京:人民交通出版社,2010:21. [16] 中华人民共和国交通运输部. 公路工程地质勘察规范:JTG C20—2011[S]. 北京:人民交通出版社,2011:72. [17] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 油气田及管道岩土工程勘察规范:GB 50568—2010[S]. 北京:中国计划出版社,2012:64. [18] 中华人民共和国铁道部. 铁路工程地质勘察规范:TB 10012—2007[S]. 北京:中国铁道出版社,2007:62-63. [19] 国家铁路局. 铁路隧道设计规范:TB 10003—2005[S]. 北京:中国铁道出版社,2005:14-15. [20] 中华人民共和国国家发展和改革委员会. 水工隧洞设计规范:DL/T 5195—2004[S]. 北京:中国电力出版社,2004:8. [21] 耿大玉, 李忠生. 中美两国的地裂缝灾害[J]. 地震学报, 2000, 22(4): 433-441. GENG Dayu, LI Zhongsheng. Ground fissure hazards in the United States and China[J]. Acta Seismologica Sinica, 2000, 22(4): 433-441. [22] BRYANT W A. History of the Alquist-Priolo Earthquake Fault Zoning Act, California, USA[J]. Environmental and Engineering Geoscience, 2010, 16(1):7-18. [23] 徐锡伟, 郭婷婷, 刘少卓, 等. 活动断层避让相关问题的讨论[J]. 地震地质, 2016, 38(3): 477-502. XU Xiwei, GUO Tingting, LIU Shaozhuo, et al. Discussion on issues associated with setback distance from active fault[J]. Seismology and Geology, 2016, 38(3): 477-502. [24] 张建毅, 薄景山, 袁一凡,等. 活动断层及其避让距离研究综述[J]. 自然灾害学报, 2012(2): 9-18. ZHANG Jianyi, BO Jingshan, YUAN Yifan, et al. Review on research on active fault and its setback[J]. Journal of Natural Disasters, 2012(2): 9-18. [25] AMBERG W, RUSSO M. Seismic design of underground structures: the Bolu Tunnel[C] //Proceedings of the AITES-ITA 2001 World Tunnel Congress, Milano, Italy. Bologna, Italy: Pàtron Editore, 2001: 137-147. [26] RUSSO M, GERMANI G, AMBERG W. Design and construction of large tunnel through active faults: a recent application[C] //Proceedings of the International Conference of Tunneling and Underground Space Use, Istanbul, Turkey. Minusio, Switzerland: Lombardi Engineering Ltd, 2002:1-14. [27] DALGIÇ S. Tunneling in squeezing rock, the Bolu Tunnel, Anatolian Motorway, Turkey[J]. Engineering Geology, 2002, 67(1): 73-96. [28] SHAHIDI A R, VAFAEIAN M. Analysis of longitudinal profile of the tunnels in the active faulted zone and designing the flexible lining(for Koohrang-III tunnel)[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 213-221. [29] CAULFIELD R J, KIEFFER D S, TSZTOO D F, et al. Seismic design measures for the retrofit of the Claremont tunnel[C] //Rapid Excavation and Tunneling Conference(RETC)Proceedings. Colorado, USA: Society for Mining, Metallurgy, and Exploration, Inc(SME), 2005: 1-11. [30] 任兴普, 李晓彬, 李卫功. 洗马河二级赛珠水电站引水隧洞跨越活断层设计[J]. 中国水运(下半月), 2015,15(2): 167-168. REN Xingpu, LI Xiaobin, LI Weigong. Design of headrace tunnels crossing active faults at Ximahe II Saizhu hydropower plant[J]. China Water Transport(Second Half of the Month), 2015, 15(2): 167-168. [31] 董勤银, 宋建平. 乌鞘岭隧道 F7 活动断层设计与施工[J]. 隧道建设, 2005, 25(3): 58-61. DONG Qinyin, SONG Jianping. Design and construction of Wushaoling tunnel crossing F7 active fault[J]. Tunnel Construction, 2005, 25(3): 58-61. [32] EISENBERG Y, TREADWEE D D. San Francisco's Southwest Ocean Outfall[C] //Proceedings of 18th International Conference on Coastal Engineering, Cape Town, South Africa. New York, USA: American Society of Civil Engineers, al Engineering, 1982: 2418-2435. [33] 马为民. 甘肃省龙首二级(西流水)水电站F66断层活动性及工程设计措施[J]. 水利规划与设计, 2005(4):24-25. MA Weimin. Activity of F66 fault and engineering countermeasures at Longshou II Xiliushui Hydropower Plant in Gansu Province[J]. Hydraulic Planning and Design, 2005(4): 24-25. [34] 黄胜. 高烈度地震下隧道破坏机制及抗震研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2010. HUANG Sheng. Research on failure mechanism and aseismic measures for underground engineering under high intensity earthquake[D]. Wuhan: Graduate School of Chinese Academy of Sciences(Institute of Rock and Soil Mechanics), 2010. [35] 何永旺. 克色克阔兹隧道 f23 断层带衬砌结构设计[J]. 科技交流, 2006, 36(2): 17-20. HE Yongwang. Design of lining structures at f23 fault area of Kesekekuozi Tunnel[J]. Scientific Exchange, 2006, 36(2): 17-20. [36] 詹润, 朱光, 杨贵丽, 等. 渤海海域新近纪断层成因与动力学状态[J]. 地学前缘, 2013,20(4): 151-165. ZHAN Run, ZHU Guang, YANG Guili, et al. The genesis of the faults and the geodynamic environment during Neogene for offshore of Bohai Sea[J]. Earth Science Frontiers, 2013, 20(4):151-165. [37] 张岳桥, 马寅生, 杨农. 太行山南缘断裂带新构造活动及其区域运动学意义[J]. 地震地质, 2003, 25(2): 169-182. ZHANG Yueqiao, MA Yinsheng, YANG Nong. Nontectonic activity of the southern marginal fault zone of the Taihangshan mountains and its regional kinematic implications[J]. Seismology and Geology, 2003, 25(2): 169-182. [38] 邓起东, 徐锡伟, 于贵华. 中国大陆活动断裂的分区特征及其成因[M] //中国活动断层研究. 北京: 地震出版社, 1994: 1-14. DENG Qidong, XU Xiwei, YU Guihua. Characteristics of regionalization of active faults in China and their genesis[M] //China Active Faults Reserch. Beijing: Seismological Press, 1994: 1-14. [39] SIBSON R H. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 1977, 133(3): 191-213. [40] 马润勇, 彭建兵, 门玉明, 等. 逆冲断层发育的力学机制研究[J]. 西北大学学报(自然科学版), 2003, 33(2): 196-200. MA Runyong, PENG Jianbing, MEN Yuming, et al. A study on mechanical mechanism on development of thrust fault[J]. Journal of Northwest University(Natural Science Edition), 2003, 33(2): 196-200. [41] 杜义, 谢富仁, 张效亮, 等. 汶川Ms8.0级地震断层滑动机制研究[J]. 地球物理学报, 2009, 52(2): 464-473. DU Yi, XIE Furen, ZHANG Xiaoliang, et al. The mechanics of fault slip of Ms 8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2009, 52(2): 464-473. [42] 高常波, 宋志宏, 钟以章,等. 辽宁地区活动断裂对输油管道影响的研究[J]. 东北地震研究, 1995, 11(3):80-86. GAO Changbo, SONG Zhihong, ZHONG Yizhang, et al. Influence of active fault on oil pipeline in Liaoning area[J]. Seismological Research of Northeast China, 1995, 11(3):80-86. [43] 王家祥, 陈长生, 史存鹏, 等. 西南某大型引水工程关键地质问题初步研究[J]. 人民长江, 2015, 46(14): 16-18. WANG Jiaxiang, CHEN Changsheng, SHI Cunpeng, et al. Preliminary study on key geological problems of a large-scale water diversion project in Southwest China[J]. Yangtze River, 2015, 46(14): 16-18. [44] 吴中海, 赵希涛, 范桃园, 等. 泛亚铁路滇西大理至瑞丽沿线主要活动断裂与地震地质特征[J]. 地质通报, 2012, 31(2): 191-217. WU Zhonghai, ZHAO Xitao, FAN Taoyuan, et al. Active faults and seismological characteristics along the Dali-Ruili Railway in western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2): 191-217. [45] 苏生瑞. 断裂构造对地应力场的影响及其工程意义[J]. 岩石力学与工程学报, 2002, 21(2): 296. SU Shengrui. Effect of fractures on rock stresses and its significance in geological engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(2): 296. [46] 苏生瑞, 朱合华, 王士天, 等. 断裂物理力学性质对其附近地应力场的影响[J]. 西北大学学报(自然科学版), 2002, 32(6): 655-658. SU Shengrui, ZHU Hehua, WANG Shitian, et al. The effect of fracture properties on stress field in the vicinity of a fracture[J]. Journal of Northwest University(Natural Science Edition), 2002, 32(6): 655-658. [47] 苏生瑞, 朱合华, 王士天, 等. 岩石物理力学性质对断裂附近地应力场的影响[J]. 岩石力学与工程学报, 2003, 22(3): 370-377. SU Shengrui, ZHU Hehua, WANG Shitian, et al. Effect of physical and mechanical properties of rocks on stress field in the vicinity of fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(3): 370-377. [48] 张秉良, 崔四平. 根据断层泥的微观特征探讨断层的活动性[J]. 地质力学学报, 1996, 2(2): 41-46. ZHANG Bingliang, CUI Siping. Activities of faults as determined from the microstructural features of the clay gouge[J]. Journal of Geomechanics, 1996, 2(2): 41-46. [49] NEWMARK N M, HALL W J. Pipeline design to resist large fault displacement[C] //Proceedings of US national conference on earthquake engineering. Michigan, USA: Earthquake Engineering Research Institute,1975: 416-425. [50] KENNEDY R P, CHOW A M, WILLIAMSON R A. Fault movement effects on buried oil pipeline[J]. Transportation Engineering Journal of the American Society of Civil Engineers, 1977, 103(5): 617-633. [51] KENNEDY R P, SHORT S A, DARROW A C. Seismic design of oil pipeline systems[J]. Journal of the Technical Councils of ASCE, 1979, 105(1):119-134. [52] WANG R L, YAW-HUE Yeh. A refined seismic analysis and design of buried pipeline for fault movement[J]. Earthquake Engineering and Structural Dynamics, 1985, 13(1):75-96. [53] WANG R L, WANG L J. Parametric study of buried pipelines due to large fault movement[M] //Critical Issues and State-of-the-art in Lifeline Earthquake Engineering. Baltimore, USA: American Society of Civil Engineers, 1995: 152-159. [54] TAKADA S, LIANG J W, LI T. Shell-mode response of buried pipelines to large fault movements[J]. Journal of Structural Engineering, 1998, 44(A): 1637-1646. [55] 赵林, 冯启民. 埋地管线有限元建模方法研究[J]. 地震工程与工程振动, 2001, 21(2): 53-57. ZHAO Lin, FENG Qimin. Research on methods for establishing FEM model of buried pipelines[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(2): 53-57. [56] 刘爱文, 胡聿贤, 李小军, 等. 大口径埋地钢管在地震断层作用下破坏模式的研究[J]. 工程力学, 2005, 22(3): 82-87. LIU Aiwen, HU Yuxian, LI Xiaojun, et al. Damage behavior of large-diameter buried steel pipelines under fault movements[J]. Engineering Mechanics, 2005, 22(3): 82-87. [57] 金浏. 断层引起的地面大变形下埋地管线非线性反应分析[D]. 南京:南京工业大学, 2009. JIN Liu. Nonlinear response analysis of pipelines subjected to fault induced ground large deformation[D]. Nanjing: Nanjing Tech University, 2009. [58] 李鸿晶, 金浏. 穿越断层埋地管线反应数值模拟——建模中的几个具体问题[J]. 自然灾害学报, 2011, 20(3): 151-156. LI Hongjing, JIN Liu. Numerical response simulation of buried pipeline crossing earthquake fault: some relative problems in modelling[J]. Journal of Natural Disasters, 2011, 20(3): 151-156. [59] 冯启民, 郭恩栋. 跨断层埋地管道抗震试验[J]. 地震工程与工程振动, 2000, 20(1): 56-62. FENG Qimin, GUO Endong. Aseismic test of buried pipe crossing fault[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(1):56-62. [60] 黄强兵, 彭建兵, 门玉明, 等. 地裂缝对地铁明挖整体式衬砌隧道影响机制的模型试验研究[J]. 岩石力学与工程学报, 2008, 27(11): 2324-2331. HUANG Qiangbing, PENG Jianbing, MEN Yuming, et al. Model test study on effect of ground fissure on open-cut metro tunnel with integral lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2324-2331. [61] 刘学增, 王煦霖, 林亮伦. 45°倾角正断层黏滑错动对隧道影响试验分析[J]. 同济大学学报(自然科学版), 2014, 42(1): 44-50. LIU Xuezeng, WANG Xulin, LIN Lianglun. Modeling experiment on effect of normal fault with 45° dip angle stick-slip dislocation on tunnel[J]. Journal of Tongji University(Natural Science), 2014, 42(1): 44-50. [62] 刘学增, 王煦霖, 林亮伦. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究[J]. 土木工程学报, 2014, 47(2): 121-128. LIU Xuezeng, WANG Xulin, LIN Lianglun. Model experiment study on influence of normal fault with 60° dip angle stick-slip dislocation on mountain tunnel[J]. China Civil Engineering Journal, 2014, 47(2): 121-128. [63] 刘学增, 王煦霖, 林亮伦. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1714-1720. LIU Xuezeng, WANG Xulin, LIN Lianglun. Model experiment on effect of normal fault with 75° dip angle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1714-1720. [64] 刘学增, 林亮伦. 75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2011, 30(12): 2523-2530. LIU Xuezeng, LIN Lianglun. Research on model experiment of effect of thrust fault with 75° dip angle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2523-2530. [65] WANG Zhengzheng, GAO Bo, SHEN Yusheng, et al. Study on the flexible lining of the tunnel in the active faulted zone[C] //Proceedings of the ISRM International Symposium on Rock Mechanics-SINOROCK 2009. Hong Kong, China: Society of Petroleum Engineers, 2009: 173-177. [66] 张煜. 断层蠕滑错动作用下隧道衬砌损伤开裂研究及柔性连接抗错断措施[D]. 成都:西南交通大学, 2016. ZHANG Yu. Research on tunnel lining damage and crack induced by fault creep and anti-breaking measure of flexible connector[D]. Chengdu: Southwest Jiaotong University, 2016. [67] 谷柏森, 吴建勋, 宋磊,等. 链式衬砌节段长度对隧道抗错断效果的影响研究[J]. 筑路机械与施工机械化, 2015, 32(3):66-70. GU Baisen, WU Jianxun, SONG Lei, et al. Research on impact of chain lining segment length on effect of tunnel dislocation-resistance[J]. Bridge and Tunnel Construction and Machinery, 2015, 32(3):66-70. [68] 刘学增, 林亮伦, 王煦霖, 等. 柔性连接隧道在正断层黏滑错动下的变形特征[J]. 岩石力学与工程学报, 2013, 32(2): 3545-3551. LIU Xuezeng, LIN Lianglun, WANG Xulin, et al. Deformation characteristics of tunnel with flexible joints affected by normal fault stick-slip dislocation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 3545-3551. [69] 刘学增, 郭彪, 李学锋,等. 变形缝对跨断层隧道抗错断影响的模型试验研究[J]. 岩石力学与工程学报, 2015(增刊2): 3837-3843. LIU Xuezeng, GUO Biao, LI Xuefeng, et al. Model experiment study on effect of deformation joints on road tunnel resisting destruction by thrust fault stick-slip dislocation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015(Suppl.2): 3837-3843. [70] 彭华, 马秀敏, 姜景捷. 龙门山北端青川断层附近应力测量与断层稳定性[J]. 地质力学学报, 2009, 15(2): 114-130. PENG Hua, MA Xiumin, JIANG Jingjie. Stability and stress measurement near the Qingchuan fault in the northern Longmen Mountains[J]. Journal of Geomechanics, 2009, 15(2): 114-130. [71] 黄醒春, 卢海星. 复杂断层扰动下的原岩应力场的数值分析与评价[J]. 岩土工程学报, 2000, 22(3):327-331. HUANG Xingchun, LU Haixing. Numerical analysis and estimation on the initial rock stress around complex faults[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3):327-331. [72] 周斌. 国家重点研发计划“水资源高效开发利用”重点专项解析[J]. 水科学进展, 2017, 28(3):472-478. ZHOU Bin. Analysis of national key R&D program of China “high-efficient development and utilization of water resource”[J]. Advances in Water Science, 2017, 28(3):472-478. [73] 张雨霆,吴勇进,房艳国,等. 滇中引水工程香炉山隧洞活动断裂带对衬砌结构的影响及应对措施研究[R].武汉:长江科学院,2015. ZHANG Yuting, WU Yongjin, FANG Yanguo, et al. Study on the impact of active faults on lining structures and their countermeasures for Xianglushan Tunnel at Central Yunnan Province Water Diversion Project[R]. Wuhan: Changjiang River Scientific Research Institute, 2015.