Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (3): 1-10    DOI: 10.19952/j.cnki.2096-5052.2021.03.01
  先进计算方法在隧道与岩土工程中的应用 本期目录 | 过刊浏览 | 高级检索 |
基于CASRock的工程岩体动力响应分析方法、软件与应用
潘鹏志1,梅万全2
1.中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室, 湖北 武汉 430071;2.武汉理工大学土木工程与建筑学院, 湖北 武汉 430070
Dynamic response analysis method, software and applications in engineering rockmass based on CASRock
PAN Pengzhi1, MEI Wanquan2
1.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China;
2.School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
下载:  PDF (9489KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对工程岩体破坏局部化的特征,建立了工程岩体动力响应分析的局部化更新规则,空间和时间尺度上分别采用细胞自动机和Newmark积分方法,基于自主研发的工程岩体破裂过程细胞自动机分析软件CASRock(cellular automata software for engineering rockmass fracturing process),研发动力分析版本CASRock.Dyna。通过研究弹性波在岩体中的传播规律,CASRock.Dyna模拟应力波的传播与解析结果吻合,验证了CASRock.Dyna进行弹性动力分析的可行性。CASRock.Dyna的弹塑性结果与边界元结果吻合,验证了CASRock.Dyna非线性动力分析的有效性。进行卸压爆破和扰动作用下的工程岩体破裂过程的动力分析,揭示了地应力、岩体非均质性和动力参数等对岩体的破坏程度和范围的影响特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘鹏志
梅万全
关键词:  CASRock  动力分析  工程岩体  破裂过程  卸压爆破  扰动破坏    
Abstract: Aiming at the localized characteristics of engineering rock mass failure, the local updating rule was established for dynamic analysis of engineering rock mass by using cellular automata technique on spatial scale and Newmark integration method on time scale, respectively. Based on a self-developed cellular automata software for engineering rockmass fracturing process(CASRock), the dynamic version, i.e. CASRock.Dyna was developed. Investigating the propagationof elastic waves in the rock mass, the stress wave propagation obtained by CASRock.Dyna was consistent with the analytical results, which verifies the feasibility of CASRock.Dyna for elastic dynamic analysis. The elasto-plastic results obtained by CASRock.Dyna were consistent with the counterparts obtained by the boundary element method, which demonstrated the ability of CASRock.Dyna for non-linear dynamic analysis. Dynamic analysis of rock mass subjected to destress blasting and blasting disturbance was conducted to explore the effect of in situ stress, heterogeneity of rock mass and dynamic parameters on failure degree and scope.
Key words:  CASRock    dynamic analysis    engineering rock mass    failure process    destress blasting    disturbance induced failure
收稿日期:  2021-07-31      修回日期:  2021-09-10      发布日期:  2021-09-20     
中图分类号:  U43  
基金资助: 国家自然科学基金资助项目(52125903)
作者简介:  潘鹏志(1976— ),男,福建永春人,博士,研究员,主要研究方向为裂隙岩体变形破坏机理与连续、非连续数值分析方法. E-mail:pzpan@whrsm.ac.cn
引用本文:    
潘鹏志, 梅万全. 基于CASRock的工程岩体动力响应分析方法、软件与应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 1-10.
PAN Pengzhi, MEI Wanquan. Dynamic response analysis method, software and applications in engineering rockmass based on CASRock. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 1-10.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I3/1
[1] CAI M. Influence of stress path on tunnel excavation response-numerical tool selection and modeling strategy[J]. Tunnelling and Underground Space Technology, 2008, 23(6): 618-628.
[2] LI Xibing, CAO Wenzhuo, ZHOU Zilong, et al. Influence of stress path on excavation unloading response[J].Tunnelling and Underground Space Technology, 2014, 42: 237-246.
[3] CAO Wenzhuo, LI Xibing, TAO Ming, et al. Vibrations induced by high initial stress release during underground excavations[J]. Tunnelling and Underground Space Technology, 2016, 53:78-95.
[4] ZHU W C, WEI J, ZHAO J, et al. 2D numerical simulation on excavation damaged zone induced by dynamic stress redistribution[J]. Tunnelling and Underground Space Technology, 2014, 43: 315-326.
[5] XIE L X, ZHANG Q B, GU J C, et al. Damage evolution mechanism in production blasting excavation under different stress fields[J]. Simulation Modelling Practice and Theory, 2019, 97: 101969.
[6] ZHAO Rui, TAO Ming, ZHAO Huahao, et al. Dynamics fracture characteristics of cylindrically-bored granodiorite rocks under different hole size and initial stress state[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102702.
[7] FANG Xueqian, ZHANG Tengfei, LI Bailin, et al. Elastic-slip interface effect on dynamic stress around twin tunnels in soil medium subjected to blast waves[J]. Computers and Geotechnics, 2020, 119: 103301.
[8] LI Chongjin,LI Xibing.Influence of wavelength-to-tunnel-diameter ratio on dynamic response of underground tunnels subjected to blasting loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 323-338.
[9] LI Xibing,LI Chongjin,CAO Wenzhou, et al. Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 131-146.
[10] LU Shiwei, ZHOU Chuanbo, ZHANG Zhen, et al. Theoretical study on dynamic responses of an unlined circular tunnel subjected to blasting P-waves[J]. Journal of Mechanics, 2021, 37: 242-252.
[11] TAO Ming, MA Ao, CAO Wenzhuo, et al. Dynamic response of pre-stressed rock with a circular cavity subject to transient loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 99: 1-8.
[12] TAO M, ZHAO H T, LI Z W, et al. Analytical and numerical study of a circular cavity subjected to plane and cylindrical P-wave scattering[J]. Tunnelling and Underground Space Technology, 2020, 95: 103143.
[13] MEI Wanquan, LI Mei, PAN Pengzhi, et al. Blasting induced dynamic response analysis in a rock tunnel based on combined inversion of Laplace transform with elasto-plastic cellular automaton[J]. Geophysical Journal International, 2021, 225(1): 699-710.
[14] SHAKERI R,MESGOUEZ A, LEFEUVE-MESGOUEZ G. Transient response of a concrete tunnel in an elastic rock with imperfect contact[J].International Journal of Mining Science and Technology, 2020, 30(5): 605-612.
[15] ZHU W C, LI Z H, ZHU L, et al. Numerical simulation on rockburst of underground opening triggered by dynamic disturbance[J]. Tunnelling and Underground Space Technology, 2010, 25(5): 587-599.
[16] LI Xing, LI Xiaofeng, ZHANG Qianbing, et al. A numerical study of spalling and related rockburst under dynamic disturbance using a particle-based numerical manifold method(PNMM)[J]. Tunnelling and Underground Space Technology, 2018, 81: 438-449.
[17] FENG Xiating, PAN Pengzhi, ZHOU Hui. Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1091-1108.
[18] PAN Pengzhi, FENG Xiating, HUDSON J A. Study of failure and scale effects in rocks under uniaxial compression using 3D cellular automata[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4): 674-685.
[19] PAN Pengzhi, FENG Xiating, HUDSON J A. The influence of the intermediate principal stress on rock failure behaviour: a numerical study[J]. Engineering Geology, 2012, 124: 109-118.
[20] PAN Pengzhi, YAN Fei, FENG Xiating. Modeling the cracking process of rocks from continuity to discontinuity using a cellular automaton[J]. Computers & Geosciences, 2012, 42: 87-99.
[21] PAN Pengzhi, FENG Xiating, ZHENG Hong, et al. An approach for simulating the THMC process in single novaculite fracture using EPCA[J]. Environmental Earth Sciences, 2016, 75(15): 1-16.
[22] PAN Pengzhi, YAN Fei, FENG Xiating, et al. Modeling of an excavation-induced rock fracturing process from continuity to discontinuity[J]. Engineering Analysis with Boundary Elements, 2019, 106: 286-299.
[23] FENG Xiating, WANG Zhaofeng, ZHOU Yangyi, et al. Modelling three-dimensional stress-dependent failure of hard rocks[J]. Acta Geotechnica, 2021, 16(6): 1647-1677.
[24] PAN P, FENG X. Numerical study of the rockburst mechanism using the elastoplastic cellular atomaton[M] // FENG Xiating. Rockburst: Mechanisms, Monitoring, Warning and Mitigation. Oxford, UK: Butterworth-Heinemann, 2018: 183-199.
[25] PAN Pengzhi, FENG Xiating, ZHOU Hui. Development and applications of the elasto-plastic cellular automaton[J]. Acta Mechanica Solida Sinica, 2012, 25(2): 126-143.
[26] LI Mei, MEI Wanquan, PAN Pengzhi, et al. Modeling transient excavation-induced dynamic responses in rock mass using an elasto-plastic cellular automaton[J]. Tunnelling and Underground Space Technology, 2020, 96: 103183.
[27] KONTONI D P N, BESKOS D E. Transient dynamic elastoplastic analysis by the dual reciprocity BEM[J]. Engineering Analysis with Boundary Elements, 1993, 12(1): 1-16.
[1] 高源, 杨天鸿, 辛全明, 刘飞跃. 北山隧道式大跨度地下四季滑雪场围岩稳定性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 109-115.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn